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ABSTRACT 

Geothermal power generation is not keeping pace with other 

renewable energy technologies. This is due to a number of 

factors including the industry’s high capital cost, of which 

wells account for a significant portion. Hence, it is 

imperative to maximize value from wells drilled by selecting 

them optimally. An important technology used when making 

well placement decisions is computer simulation of 

production. This is usually done manually, with experts 

creating reservoir models, simulating wells at candidate 

locations and comparing the predicted production scenarios.  

Manual selection in this manner is slow and labor intensive, 

requiring weeks or months for expert modelers to make 

recommendations. Recently, various heuristics have been 

investigated to try and automate this process. Examples 

include Particle Swarm Optimization, Genetic Algorithms, 

Simulated Annealing, and Gradient descents. However, no 

strict form optimization that guarantees the best solution has 

been attempted for the complex problem of selecting 

multiple production wells to maximize value.  

This paper uses Integer Programming to address this 

problem. An economic model was used to calculate Net 

Present Values (NPVs) for a set of candidate wells and the 

interactions between them using AUTOUGH2 simulation 

results of an example geothermal system. Binary decision 

variables were used in the optimization to select the 

combination of wells that would maximize total NPV. 

Unlike with heuristics, the solution is guaranteed to be 

optimal, at least with respect to the economic model. It was 

also found to be optimal with respect to the AUTOUGH2 

model for the reservoir used.  

1. INTRODUCTION  

1.1 Motivation 

The use of renewable forms of energy is growing globally, 

but geothermal is lagging behind other forms, with a 2015 

average growth rate of 2.4%, compared to an average across 

all renewable sources of 12% [1]. One of the main reasons 

for this is that geothermal requires a much higher capital 

investment than the rest, a significant portion of which can 

be attributed to the cost of drilling wells. In Iceland, for 

example, the costs associated drilling and constructing wells 

comprise 34% of total capital expenditure [2]. Also, 

Blankenship et al. estimate that drilling related expenses can 

exceed 50% of total plant costs [3]. 

Along with high upfront costs, geothermal ventures also 

involve high degrees of risk. Well drilling can be a hit-and-

miss activity; a global study on the success of geothermal 

wells conducted by the IFC estimates a success rate of about 

50% for the first well in a field [4]. The success rate improves 

as more wells are drilled in a field, but even over the first 30 

wells the study’s estimate for cumulative success rate is only  

about 70%. Well costs can be a make-or-break factor in a 

geothermal project, and improving success rates for wells 

will bring large gains in reducing capital sunk into 

unproductive wells. 

The IFC report also found that while the success rates of 

exploration phase wells have been increasing notably over 

the years, those of development wells and operational wells 

have not [4]. This suggests that while methods for collecting 

information have been progressing, those for decision 

making with that information have not. This research focuses 

on development phase and operational wells, aiming to 

improve well placement decisions using numerical 

simulation and optimization. 

1.2 Background 

The use of numerical simulation as a tool for resource 

estimation and to inform drilling and production decisions 

has become increasingly common. Reservoir models are 

created and calibrated from observations and field data such 

as topological measurements, MT surveys, and exploratory 

well data, in a process known as natural state modeling. A 

calibrated natural state model is then used as the initial state 

in future simulation of production. Both natural state and 

future simulation modeling are done “manually”, in the sense 

that expert modelers calibrate the models and select the 

conditions and parameters to run them based on technical 

knowledge and experience.  

Manual selection of well locations is very time and labor 

intensive, especially for large, high fidelity models that take 

hours or even up to weeks to run. This research attempts to 

create a framework for automating the future simulation 

process and arrive at optimal drilling recommendations, 

given a calibrated natural state model. This has the benefits 

of formalizing the definition of possible options and the 

selection of the best one, insofar as the numerical model is 

representative of the physical system. Such an approach 

would reduce the human effort involved, as well as 

dependence on human expertise and the effect of human 

error. The simulation software used was AUTOUGH2 [5]. 

1.3 Previous Work 

Over the past few years, there have been many attempts to 

formulate theoretical frameworks, or use mathematical 

techniques to inform well placement decisions. They have 

generally focused on using metaheuristics to find good 

solutions, and fall broadly into two categories: gradient-

based methods, and stochastic search algorithms. Stochastic 

here refers to the mechanism for searching the solution 

space. 

A common stochastic method used is Particle Swam 

Optimization (PSO). Ansari et al. [6] used PSO to select 

locations for 4 production and 4 re-injection geothermal 

wells out of a set of 11 existing but abandoned wells in the 

US Gulf Coast. Onwunalu and Durlofsky also used PSO, but 
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with Well Pattern Optimization (WPO) on an oil field [7], 

essentially selecting parameters that specify the well patterns 

that encode the potential solutions.  

WPO has also been used with Genetic algorithms (GA); 

Ozdogan et al. used a hybrid genetic algorithm in a WPO, 

with a fixed well pattern to reduce the solution space [8]. 

GAs themselves have been quite commonly used for well 

placement optimization and not just with WPO, for example 

by Montes et al. [9], who developed and tested a GA on two 

example reservoirs. Another stochastic method that has been 

used in this area is Simulated Annealing (SA). Beckner and 

Song used SA with a Travelling Salesperson formulation to 

optimize well placement and scheduling on an example 

petroleum field [10].  

Many gradient based methods have also been used for the 

well placement problem. Sarma and Chen use an adjoint 

based gradient method on a continuous approximation of 

some example oil reservoirs [11]. There have also been 

combinations of these methods; Bangerth et al. used a 

Simultaneous Perturbation Stochastic Approximation, which 

is a stochastic version of a steepest descent algorithm, and 

compared it to a Finite Difference gradient method and a SA 

method [12].  

Though these approaches all have their advantages and 

disadvantages, none of them guarantee optimality (with 

respect to the numerical model). They all aim to find good 

solutions with as few simulation runs as possible. Helgason 

et al. [13]  ranked all blocks in an example reservoir by NPV 

to find an optimal location. This is essentially a grid search 

enumerating over the entire solution space and choosing the 

best one, but it is guaranteed to be optimal if only one well 

is being selected. However, no one has used a method that 

guarantees optimality for the complex problem of selecting 

multiple production wells. This paper attempts to do that 

while keeping the number of simulation runs low. 

1.4 Overview of Integer Programming 

A Mixed Integer Programming (MIP) model with binary 

decision variables is used for the optimization of well 

location, where binary decision variables model the selection 

of which wells to drill.  Solution methodologies that deliver 

exact solutions for MIP models have made huge advances 

over the last twenty years, and now it is routine to solve such 

models with thousands of binary variables.  The most 

popular solution approaches for MIP models use repeated 

application of well-known algorithms for Linear 

Programming (LP) models.  In LPs, the objective function 

and constraints are linear, but variables can take fractional 

values.  MIP solvers sequentially add extra 

constraints (cutting planes) to LPs that preclude fractional 

optimal solutions, and enumerate different ways of fixing 

decision variables to binary values (branch-and-bound) in a 

search procedure that eventually yields a provably optimal 

solution. We use the state-of-the-art solver Gurobi [14]  for 

solving our MIP models. 

Since the decision variables were whether or not to have a 

well at a given location, the coefficients of these variables in 

the objective function had to carry the information used to 

compare them. Net Present Value (NPV) was used to do this, 

and was determined from production time histories extracted 

from the simulation results, using a simple economic 

calculation. The optimization chooses wells "blindly", in the 

sense that it does not know the structural information of the 

reservoir, and is based solely on the effect of that structure in 

producing the NPVs entered to it.  

The simplest scenario of selecting only one well doesn’t need 

a MIP, since the NPVs can just be compared and the highest 

selected, as was done by Helgason et al. The more complex 

scenario of selecting multiple wells in this fashion warrants 

integer programming, but also requires information about the 

interactions between wells. This study considered 41 

candidate locations for a total of four wells. Simply 

simulating every possible combination of these wells in 

AUTOUGH2 is computationally intense approach, so a 

surrogate model was required for capturing all these 

interactions, from as few simulations as possible. The 

surrogate model and the MIP formulations created are 

discussed in Section 2. 

2. METHOD  

2.1 AUTOUGH2 Model 

The simulation model used was a relatively small one, and 

was originally based on a geothermal system in Indonesia. It 

includes a recharge area that is 16km by 14km wide, and 

extends between 3.5km to 4km below the surface; the system 

is under the slopes of a volcano so the surface topology 

varies quite a bit in elevation. The reservoir is intersected by 

four faults that essentially bound it. Two main faults (higher 

permeability) run in a near northeast-southwest direction, 

and two lesser (lower permeability) ones run northwest-

southeast. The reservoir is covered by a low permeability 

clay cap. The numerical model was discretized into 8195 

blocks and 528 nodes, in 483 columns and 19 rock layers, 

plus an atmospheric layer.  

Its natural state was calibrated with 3 deep up-flows and 47 

different defined rock types, to match synthetic down-hole 

temperature data generated for exploration wells. Future 

simulation runs were set up to consider a 25 year production 

lifespan, and took approximately one minute on to run to 

completion using AUTOUGH2 on a standard Windows 

desktop machine. The wells in these simulations used a 

deliverability model, with a fixed productivity index (PI). 

AUTOUGH2 produces listing files to store the results of 

these simulations, from which production time histories for 

were extracted and processed using PyTOUGH [15] modules 

in Python. 
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Figure 1: Horizontal slice through the numerical model, 

showing the fault structure. 

2.2 Surrogate Model 

As discussed above, the IP approach requires a linear 

objective function and constraints. The full AUTOUGH2 

simulations are non-linear, complex and cannot be used as 

black-box models within the MIP optimization, so a 

surrogate model was required for translating simulation 

output to parameters in the optimization. It had to be capable 

of representing the effect of using a well on other possible 

wells, as every well can change the temperature and pressure 

distributions and flow pathways in the reservoir. With a 

small simulation model like the one used, simulating all 

possible solutions (well combinations) can be done for a 

small enough solution space, but this is impractical for larger 

models with longer solve times. As such, the surrogate model 

had to be able to represent all possible well combinations 

without simulating each one.  

The surrogate model was created from simulation results of 

a subset of possible solution scenarios. Each simulation had 

wells placed at candidate locations, and time histories of well 

mass flows and enthalpies were recorded and multiplied to 

get heat flow predictions. The fluid harvested from the wells 

should actually depend on the type of power plant installed. 

Dry steam plants require steam to directly turn the generator 

turbines, flash steam plants depressurize hot liquid to convert 

it to steam before driving the turbines, and binary cycle 

plants can use liquid at lower temperatures to heat a 

secondary working fluid with a lower boiling point, and use 

its steam to drive the turbines.  

There are also other issues, such as heat loss during 

extraction, and possible re-injection of used fluid back into 

the reservoir. These were all ignored to simplify the problem, 

and heat flow was used as the production quantity rather than 

steam flow or temperature regulated mass flow, assuming a 

direct conversion from heat to electrical energy with a fixed 

generation efficiency. Start times and limits on extraction 

were also excluded, as the main aim of these models was to 

make well placement decisions, not operational decisions. A 

simple NPV calculation was used, multiplying the heat flows 

by the generator efficiency and an electricity price to get cash 

flows, which were then discounted on an annual basis and 

summed to give a single monetary value to each candidate 

solution.  

The generator efficiency was set to 12%, the global average 

conversion efficiency for geothermal plants as of 2012, 

according to Moon and Zarrouk [16]. The electricity price 

used was the marginal cost of new generation in 2012 as per 

the MBIE [17]. It doesn’t matter that a New Zealand 

electricity price was used even though the example field is 

based on one in Indonesia, as the objective of this work was 

to test the approach rather than find a specific solution. The 

discount rate was set arbitrarily at 10%. Plant and well costs 

were neglected at first, though a cost model was included 

later on. The blocks for placing wells in the simulation runs 

were selected based on simple physical cutoffs for 

temperature, depth and permeability: 

These cutoffs were somewhat arbitrary, and were meant to 

demonstrate that simple, programmable criteria can be used 

to define a set of candidate well blocks with minimal manual 

inspection. They filtered out 41 blocks in the model to serve 

as candidate well target locations. Since the reservoir model 

is 3D, the “candidate locations” refer to blocks in the model, 

and not to geographical surface locations. The number of 

wells desired was also limited to four, so the solution space 

was every combination of four wells out of the 41 candidate 

locations. This is somewhat reflective of reality, where the 

number of wells drilled is limited by plant capacity.  

2.3 Additive Interaction Formulation 

This surrogate model considered the effect of extracting from 

one well on the potential resource available for all other 

candidate wells. This was done by running simulations with 

all the wells on and producing, but only one with a normal 

PI (the main well) and the rest (observer wells) with reduced 

PIs, so they would producing insignificant mass flows. 41 

simulations were run in total, one with each of the candidate 

wells as the main well and the rest as observers. 

Despite the very small mass flows, the decays in the observer 

wells’ productions were indicative of the main well’s effect 

on them, and could be scaled back up and discounted to give 

NPV penalties representing how much the main well takes 

away from the observer wells’ potential values. Since all the 

observer wells have very small PIs and are extracting 

negligible amounts of resource, their effects on each other 

can be ignored, and thus the main well’s effects can be 

isolated.  

Operationally, this was done by dividing the observer wells’ 

PIs by a scale factor for the AUTOUGH2 simulations, and 

then multiplying the extracted mass flows back up by the 

same scale factor. The mass flows were then multiplied by 

the enthalpies to get apparent heat flow curves, which were 

shifted by the baseline value (zeroed) to get heat losses, 

shown for an example well in Figure 2 below. These losses 

are how much potential heat flow observer wells lose due to 

the main well’s production, and were discounted to get the 

NPV penalties.  
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Figure 2: Example observer well apparent heat flow (blue 

axis) and heat flow loss (red axis). 

The MIP formulation is given overleaf. The decision 

variables 𝑧 form a 41x41 matrix, of which the diagonals 

select wells, and the off-diagonals select interactions 

between the selected wells. The objective function 

coefficients 𝑓 also form a matrix of the same size, containing 

the calculated NPVs. The diagonals contain positive values 

(main well NPVs), and the off-diagonals contain negative 

values (observer well NPV penalties). The objective function 

maximizes the total NPV from all selected wells. Constraint 

𝐶1 ensures that the effects of all selected wells on each other 

are included (if wells 𝑖 and 𝑗 are both on, then the NPV 

penalty of well 𝑗 on well 𝑖 must be included). Constraint 𝐶2 

limits the number of wells selected to 4.
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Maximize: 

∑ ∑ 𝑓𝑖𝑗

41

𝑗=1

41

𝑖=1
𝑧𝑖𝑗  

Subject to: 

𝑧𝑖𝑗 ≥ 𝑧𝑖𝑖 + 𝑧𝑗𝑗 − 1, (𝐶1) 

∑ 𝑧𝑖𝑖 ≤ 4, (𝐶2)
41

𝑖=1
 

Where 𝑧 and 𝑓 are defined as: 

𝑧𝑖𝑖 = {
1, 𝑖𝑓 𝑤𝑒𝑙𝑙 𝑖 𝑖𝑠 𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑧𝑖𝑗,𝑖≠𝑗 = {
1, 𝑖𝑓 𝑤𝑒𝑙𝑙 𝑖 𝑖𝑠 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑 𝑏𝑦 𝑤𝑒𝑙𝑙 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓𝑖𝑗 = {
𝑁𝑃𝑉 𝑜𝑓 𝑤𝑒𝑙𝑙 𝑖, 𝑖𝑓 𝑖 = 𝑗

𝑁𝑃𝑉 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑜𝑓 𝑤𝑒𝑙𝑙 𝑗 𝑜𝑛 𝑤𝑒𝑙𝑙 𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The results from optimizing with this surrogate model are 

given below in Table 1. The model’s NPVs for the optimal 

well blocks are compared against those calculated for each 

the blocks from directly simulating the scenario with all of 

them producing using AUTOUGH2. 

Table 1: NPV comparison of Additive Interaction model 

to direct simulation for wells in the optimal solution. 

Well Simulation Surrogate % Difference 

jd13 3.13E+07 3.01E+07 3.7 

jy13 3.12E+07 3.03E+07 2.9 

jy14 3.60E+07 3.50E+07 2.7 

kt14 3.54E+07 3.44E+07 2.8 

Total 1.34E+08 1.30E+08 3.0 

    The surrogate model slightly under-predicts NPV. This is 

because in reality, when multiple wells are producing, their 

negative effects on each other are not strictly additive, as 

this model assumes. Main wells would not only negatively 

impact observer wells, but also reduce the negative impacts 

of other main wells on the observer wells, as illustrated 

conceptually in Figure 3 below. This model accounts for the 

effects of all the wells on each other (the solid arrows), but 

not the effects of each well on the other wells’ interactions 

(dotted arrows).  

 

Figure 3: Conceptual schematic of interactions. 

Despite this, the deviation of the optimal well NPVs from 

those calculated by directly simulating the 4 wells together 

is very low, showing that this model can be used with a 

high degree of accuracy. Though the NPV estimation of the 

surrogate model was shown to be very accurate for the set 

of wells deemed optimal, there is no guarantee that this set 

of wells is also optimal with respect to the simulation 

model. If the Additive Interaction model isn’t accurate over 

the whole solution space (all well combinations), then it is 

possible that the surrogate model could have overlooked a 

solution that is optimal for the simulation model.  

Checking this required simulating every combination of 

wells in AUTOUGH2, calculating the resulting NPVs and 

comparing with the surrogate model predictions. Doing so 

for every 4 wells out of the 41 candidate locations would 

require 101,270 simulations in total. To save runtime, this 

was done for a reduced solution space instead; testing every 

four well combination out of a set of 20 candidate locations. 

This required 4845 simulation runs. These 20 candidate 

locations were defined in the same way as the previous 41 

had been, but with higher cutoffs for the temperature and 

permeability. Since this candidate set was a subset of the 

original one, the surrogate model’s optimal solution was the 

same. The total NPVs for all combinations were calculated 

both from the surrogate model and directly from simulation, 

then ranked and compared. The top 20 combinations from 

direct simulation are given below in Table 2. 

Table 2: Total NPVs and rankings for the Additive 

Interaction model and direct simulation for the top 20 

well combinations. 

Simulation Surrogate Model NPV % 

Diff 
Rank Value Rank  Value 

1 1.34E+08 1 1.30E+08 3.0 

2 1.33E+08 5 1.29E+08 3.4 

3 1.33E+08 4 1.29E+08 3.2 

4 1.33E+08 3 1.29E+08 2.9 

5 1.33E+08 2 1.30E+08 2.5 

6 1.33E+08 6 1.29E+08 3.0 

7 1.30E+08 10 1.26E+08 3.1 

8 1.30E+08 11 1.26E+08 3.1 

9 1.30E+08 8 1.26E+08 3.0 
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10 1.30E+08 9 1.26E+08 3.0 

11 1.30E+08 13 1.26E+08 3.2 

12 1.30E+08 17 1.26E+08 3.3 

13 1.30E+08 7 1.26E+08 2.7 

14 1.30E+08 18 1.26E+08 3.3 

15 1.30E+08 16 1.26E+08 3.2 

16 1.30E+08 14 1.26E+08 3.1 

17 1.30E+08 19 1.26E+08 3.3 

18 1.30E+08 20 1.25E+08 3.3 

19 1.30E+08 15 1.26E+08 3.1 

20 1.30E+08 12 1.26E+08 2.8 

     
It can be seen from this table that the well combination 

found to be optimal with the surrogate models inputs to the 

MIP are indeed the optimal combination when calculated 

using the AUTOUGH2 simulation. The NPV errors are also 

consistently small, with all of them being less than 4% 

across all 4845 combinations. Despite being a very good 

surrogate model, it doesn’t give the exact same rankings for 

the solutions as the direct simulation. For example, the 

second best solution as per the surrogate model is actually 

the fifth best from the simulation, and vice versa.  

Plotting the NPVs and rankings from the simulation against 

those from surrogate model for the whole set, as in Figures 

4 and 5, shows an almost linear trend. Correlations between 

the surrogate model and direct simulation were calculated 

for both the rankings and NPVs, and both were above 99%. 

However, there are bunches of local scattering. This is a 

clustering effect, with solutions grouping together in bands 

that can be clearly ordered. Within these groups however, 

similar solutions get “swapped”, in the sense that one is 

slightly better in the numerical model, but the surrogate 

model predicts the order the other way around.  

These bands are visible in both plots, but are exaggerated in 

the rankings plot, due to the smaller plotting scale. They are 

also shown in Table 2 as well, separated by thick red 

boundaries between them. The top 5 solutions are common 

to both the surrogate model and direct simulation, despite 

not being in quite the same order. The next 8 solutions and 

the 7 after them (in simulation rank) form two more bands 

respectively, with almost all the solutions in them being 

common to both the simulation and surrogate model.  

 

Figure 4: Solution NPV comparison of Additive 

Interaction model to direct simulation. 

 

Figure 5: Solution ranking comparison of Additive 

Interaction model to direct simulation 

Similar solutions within clusters might only differ by one or 

two wells being a few blocks away, and generally have at 

least 3 of the 4 wells quite physically close to each other. 

For example, the solutions with simulation rank 2 and 5 

(surrogate rank 5 and 2 respectively) have two well blocks 

in common, circled in black in Figure 6 below. The other 

two wells are also very close and are only shifted by a few 

blocks, circled in red and blue. For this reason, it doesn’t 

matter if the surrogate model’s optimal solution isn’t 

exactly the same as that for the simulation, because it will 

be in the same vicinity and have a very similar output. 
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Figure 6: Vertical slice through the eastern main fault 

showing temperature output from the AUTOUGH2 

model with well locations for solutions 2 and 5. 

So far, optimizing with the Additive Interaction model has 

been shown to give optimal or near optimal well locations 

with a high degree of accuracy for the 4 well case. The next 

step was to extend this to larger numbers of well selected. 

The same optimization was run multiple times with the 

NPVs from the surrogate model, but with the limit on the 

maximum number of selected wells in constraint 𝐶2 

gradually increased from 4 up to 15.  

The optimization only ever chose 11 wells; even when the 

maximum well limit was 12 or above. For these cases, it 

didn’t select as many wells as it could have. This was 

because at that point, the penalties from additional wells 

began to outweigh their own NPV contributions, so the 

optimization would choose not to add them. It is also worth 

mentioning here that Gurobi took longer to solve the MIP 

when the well limit was increased. The optimization would 

run in under a second for the 4 well case, but took several 

minutes for the 10 well case. This is because there are far 

more possible combinations of 10 wells than there are of 4 

wells, so the solution space covered during the solve was 

much larger. 

The optimal wells selected in the 4 well limit scenario 

remained in the optimal selection as the well limit was 

increased, with other wells being added to the selection. For 

all the limit scenarios, the model outputs were tested by 

comparing the NPVs to those calculated by running 

AUTOUGH2 simulations with all the selected wells 

producing. The percentage error of NPV from the surrogate 

model compared to that from directly simulating the wells 

was plotted against the number of wells, for the 4 wells that 

remained optimal in all scenarios, and for the NPV sum over 

all wells: 

 

Figure 7: NPV errors for optimal wells vs. number of 

optimal wells. 

While the model is very accurate for small number of well, 

the discrepancy from the direct simulation values grows 

quite large as the number of wells increases, possibly 

nonlinearly. It reaches about 10% for 8 wells, and about 20% 

for 10 wells. The errors are related to well location. Wells 

jy14 and kt14 have lower errors than the other two because 

they are deeper in the reservoir; the wells added as the well 

limit was increased were in shallower regions and therefore 

were further away and had less effect on these two wells than 

on the other two.  

2.4 Additive Interaction Formulation with Well Costs 

Having shown that the model is accurate for small numbers 

of wells and when used with the optimization gives solutions 

that are optimal or near optimal, another optimization was 

done with drilling costs included in the economic 

calculations. This was done to get some final results 

reflective of a possible real world scenario. The cost model 

made by Lukawski et al. [18] was used to define drilling cost 

as a function of depth for each candidate well. Their model 

is given below, with 𝐶 being the cost in USD. 

𝐶 = 1.72 ∗ 10−7 ∗ 𝐷𝑒𝑝𝑡ℎ2 + 2.3 ∗ 10−3 ∗ 𝐷𝑒𝑝𝑡ℎ − 0.62 

Their paper is from 2014, and since the electricity cost 

estimate used was from 2012 and was for New Zealand, the 

calculated well drilling costs were converted to NZD [19] 

and deflated back to 2012 values [20] for the sake of 

consistency. These were then treated as upfront costs and 

were not discounted. Well maintenance and steam gathering 

infrastructure costs were not included either.  

The constraint in the previous MIP formulation that limited 

the number of wells (𝐶2) was removed. Instead, the well 

costs were used to limit the number of wells. The new 

formulation is given below: 

Maximize: 

∑ ∑ 𝑓𝑖𝑗

41

𝑗=1

41

𝑖=1
𝑧𝑖𝑗 − ∑ 𝑐𝑖𝑧𝑖𝑖

41

𝑖=1
 

Subject to: 

𝑧𝑖𝑗 ≥ 𝑧𝑖𝑖 + 𝑧𝑗𝑗 − 1, (𝐶1) 

Where: 
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𝑐𝑖 = 𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑤𝑒𝑙𝑙 𝑖 

The optimal solution selected included nine wells in total; the 

same nine wells as were selected when the well limit was set 

to nine without costs imposed. If the costs set were greater, 

fewer wells would have been chosen, and if they were lower, 

more wells would have been chosen. The costs didn’t affect 

which wells are chosen because the best well blocks are all 

quite close to each other (were at similar depths).  

If they were more spread out, of if surface topology varied 

more drastically, the well costs might have been a bigger 

determinant. Another factor was that directional drilling and 

using multiple feed zones in a single wellbore were not 

considered. If they were included in the cost model, the 

clustering effect of the blocks selected would have been 

further accentuated. 

3. SUMMARY  

3.1 Conclusion 

This paper aimed to streamline and formalize the future 

simulation process, to optimally select multiple production 

wells, with as few simulation runs as possible. Integer 

Programming formulations were used to achieve this using 

Gurobi as the solver. First, a few simple rules were made to 

define a set of candidate well blocks as potential production 

wells in AUTOUGH2 simulations. NPVs calculated from 

simulation outputs were used as coefficients in the objection 

function for the optimization. 

A surrogate model was developed to allow the optimization 

to explore the entire solution space without having to run a 

large number of full reservoir simulations. It simulated a well 

at each location individually (a total of 41 runs) and got 

NPVs for each well, and NPV penalties for the effect of each 

well on every other candidate location. It was very accurate 

when compared to NPVs calculated from well directly 

simulated together, for small numbers of well selected.  

When compared against direct simulation for all possible 

solutions in a reduced solution space, the solution NPVs and 

rankings for the model were very strongly correlated with 

those from the simulation. The model optimal solution is 

guaranteed to find solutions to be near optimal, if not 

optimal, for the simulation. However, as the limit on wells 

chosen increased from 4 to 11, the NPV error of the model 

went up from less than 4% to over 20% 

3.2 Future Work 

The Additive Interaction model can be improved so it is more 

accurate for larger numbers of wells selected, by trying to 

include the effects of wells on other wells’ effects on each 

other (see Figure 3). Once this surrogate model is found to 

be sufficiently accurate for the example reservoir used, it will 

be tested on a more developed and realistic reservoir model. 

The next step would then be to incorporate uncertainty in the 

simulations and carry it through to the optimization. Finally, 

the framework can also be expanded to include well 

scheduling decisions as well.  
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