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ABSTRACT 

Reservoir modelling is undertaken to represent the physical 

state of the reservoir in order to estimate its current 

condition and to predict future responses. Prior to use of the 

reservoir model for forecasting, it is common to calibrate 

natural state and production models using temperature and 

pressure data gathered from downhole surveys. In addition 

to these data, microseismicity presents a further opportunity 

to calibrate reservoir parameters, in particular the 

permeability of active faults that serve as major fluid 

pathways. Microearthquakes (MEQs) occur in areas where 

brine produced from the production wells is reinjected. The 

injection causes fluid pressure to build-up in the area, which 

decreases the rock yield strength and promotes failure: a 

small earthquake. These events may occur on active faults 

that are also major fluid pathways in the field. The location, 

migration, and number of MEQs provide information about 

pressure change and the nature of fluid flow through the 

reservoir. Many fields these days are equipped with 

instruments to detect and locate MEQs. The objective of 

this project is to integrate MEQ data into the reservoir 

model development workflow so as to assist model 

calibration and reservoir characterization. 

In this project, a simple reservoir model is created to 

represent an area into which fluid is injected. A forward run 

using the TOUGH2 reservoir simulator is conducted to 

estimate pressure changes due to injection into a single well 

for specified reservoir and fault parameters. Pressure 

change on the fault is used to compute an average 

seismicity rate as well as individual MEQ locations and 

times. Sensitivity analysis has been conducted to 

understand how model parameters affect the amount of 

seismicity generated, and the manner in which it travels 

along the fault. The coupling between reservoir pressure 

evolution and synthetic microseismicity provides the 

physical link necessary to use field MEQ data for 

calibration. In particular, we will use the seismicity 

migration rate to estimate permeability of the reservoir and 

faults. The synthetic study presented here is a proof-of-

concept before application of the approach to an actual 

geothermal MEQ dataset. 

1. INTRODUCTION 

Geothermal systems involve complex physical processes of 

heat and mass transfer, and deformation of the solid rock 

matrix, all in a highly heterogeneous environment 

(O’Sullivan and Pruess, 2000). Thus, numerical reservoir 

modelling is usually undertaken to approximate the 

physical conditions within the reservoir. Numerical 

simulation is being carried out to mathematically 

characterize the flow of heat and fluid in a fractured porous 

media using 3D structures. This 3D model consists of 

several blocks and elements with each block representing 

the rocks and faults of the geothermal reservoir. Once the 

model is a suitable representation of the reservoir, it can be 

used in forecasting future responses. 

Calibration improves the match between the reservoir 

model and reality. Reservoir models are calibrated by 

adjusting the reservoir parameters (such as permeability and 

porosity) so that the simulation matches temperature and 

pressure data from the field. Usually, these data are 

measured by downhole surveys. We propose that 

microseismicity provides an additional source of 

information for model calibration. Microearthquakes 

(MEQs) have been commonly considered as one of the 

tools for assessing reservoir parameters (Pramono and 

Colombo, 2005) specifically the permeability of the active 

faults that serve as the major fluid flow paths.  

On an active fault, shear stress builds up over time due to 

tectonic plate motions. An earthquake is triggered when the 

shear stress reaches the shear strength of the fault. 

However, for induced seismicity in a geothermal field, the 

shear strength decreases as the fluid pressure builds up 

around a reinjection well. This promotes rock failure and 

triggers small earthquakes. MEQs mainly occur in 

reinjection areas where brine produced from the production 

wells is being reinjected. The location, migration, and 

number of MEQs are essential in providing information on 

how pressure changes within the field and how fluid flows 

through the reservoir. Many fields these days are equipped 

with instruments to detect and locate MEQs. In New 

Zealand, microseismic networks are operated at five 

geothermal fields: Wairakei-Tauhara, Kawerau, Rotokawa, 

Ngatamariki, and Mokai (Sherburn et al, 2015). 

This paper will focus mainly on the integration of MEQ 

data within the reservoir model development workflow. In 

particular, these data are used during history matching to 

estimate permeability parameters. Our study is treats only 

synthetic examples as these initial steps are proof-of-

concept. Application of the approach to an actual 

geothermal MEQ dataset will occur later. 

2. METHODOLOGY 

This paper follows a general workflow: (1) development of 

a simple reservoir model for a generic brine reinjection 

well, (2) development of an induced seismicity model to 

generate synthetic earthquake observations and (3) inverse 

modeling of the earthquake observations to estimate 

permeability of the original (known) reservoir model 

(Figure 1). 

Our generic reservoir model represents an area into which 

fluid is injected. A forward model run using TOUGH2 is 

performed using initial reservoir parameters (permeability, 
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porosity, injection rate), which gives as an output pressure 

changes at different times and locations on a specified fault. 

The pressure values are used as input for an earthquake 

simulator that computes the seismicity rate and synthetic 

microseismicity: number of events in the fault, location and 

times of earthquakes. 

For calibration, the MEQ data generated from the synthetic 

model are used in inverse modeling to estimate the (known) 

reservoir parameters. This process yields a probability 

distribution of the permeability of the specific fault in the 

model. We achieve this by running several forward models 

using TOUGH2 and the EQ simulator to estimate the 

likelihood of different parameter values given the 

(synthetic) MEQ data. 

 

Figure 1: General workflow of the reservoir model 

development and inverse modeling using 

microearthquake data. 

 

2.1 Synthetic Reservoir Model Development 

2.1.1 Grid Generation 

The first step in model creation is generation of grid for 

flow simulation. For simplicity, a rectangular grid is created 

to represent the area with fluid being injected at the center. 

It is important that the dimensions of the blocks are small 

enough so that running both the forward and inverse models 

using TOUGH2 will be efficient and accurate. However, for 

a large grid structure, it will be time-consuming if all blocks 

are of a small size. PyTOUGH provides mechanisms for 

controlling and altering grid dimensions, resolution as well 

as fitting topography and optimizing grid structure (O’ 

Sullivan et al, 2013). Using PyTOUGH, we performed 

several grid refinements around the model centre where 

injection occurs (Figure 2a). The original grid, with 

dimension of 12000 m x 12000 m, consisted of 14,400 

blocks with each block having a dimension of 100m x 

100m. As we are primarily interested in the area near the 

injection, the grid generation was modified by increasing 

the size of the outer blocks to 400m (each side) and 

performing several refinements to 200m and 100m toward 

the centre. This reduces the total number of blocks to 5,384.  

The model assumes a two-dimensional reservoir with fluid 

flowing only in x and y directions. The model has only one 

layer with thickness of 1m. As the fluid is injected at the 

centre of the grid, it is expected that flow is primarily radial 

within the reservoir. As a result of the inherent symmetry, 

flow only needs to be simulated in one quarter of the model 

grid (Figure 2b). This reduces the grid to 1,346 blocks, 

which further reduces the time to run simulations. This is 

important for inverse modeling, in which a large number of 

forward runs are required. 

 

Figure 2: (a) Rectangular grid with increasing 

refinement at the centre. (b) Quarter of the grid 

used in the model. 

 

2.1.2 TOUGH2 Data File and Simulation 

Prior to running the model, TOUGH2 data files are 

prepared. In this file, reservoir parameters, generators, and 

boundary conditions are specified.  

For our generic reinjection model, the permeability of the 

blocks in all directions (x and y) is set to 1.0 x 10-13 m2 with 

porosity of 0.2. The volume of the boundary blocks is very 

large (about 108 m3), which approximates an open boundary 

condition. A generator is placed at the bottom left corner of 

the quarter grid with injection rate of 1 kg/s and 

temperature of 50oC. Initial conditions are set to pressure of 

0.1 MPa and temperature of 50oC, the same as the injection 

temperature so that only fluid pressure effects are 

considered. The model is run to an end time of 5 years. The 

resulting pressure change within the reservoir and 

spatiotemporal pressure changes on the fault are shown in 

Figure 3.  

In this model, the fault is assumed to have the same 

permeability as the reservoir (i.e., all the blocks in the 

model has uniform permeability) thus the pressure change 

in the model is uniform within the reservoir. However, in a 

real geothermal system, the permeability of the fault and the 

reservoir is different. The difference in permeability makes 

a fault a conduit of the fluid. This will result in different 

Synthetic Reservoir 
Model Development Inverse Modelling
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pressure changes within the fault as compared to the 

homogeneous reservoir. 

As seen in Figure 3a, higher pressure is observed in the area 

near the injection well and the pressure decreases as you 

move away from it.  Also, it is observed that at a given 

distance from the injection well the pressure initially 

increases logarithmically in time due to the 2D nature of the 

flow (Figure 3b). Pressure begins to stabilize at later time 

due to the imposed open boundary condition. 

 

(a) 

 

(b) 

Figure 3: (a) Pressure change through the fault and the 

reservoir after 5 yrs. (b) Spatiotemporal pressure 

change in the fault over time (open boundary). 

 

2.1.3 Induced Seismicity from Pressure Data 

The pressure output from the TOUGH2 simulation is used 

in generating synthetic earthquakes on the active fault. We 

approximate a fault as a line segment contained within a 

two-dimensional reservoir (see Figure 3a). Pressure output 

from the reservoir simulation that is coincident with the 

position of the imagined fault is used to estimate a 

spatiotemporal seismicity rate. The pressure output is 

interpolated depending on the location of the fault in the 

reservoir model (e.g., length of fault, distance from 

injection, etc). The details of the fault in this study are 

given in Table 1.  

Fault Parameters 

Fault Length (L) 1000m 

Fault Azimuth 45 ∘ 

Distance from the Injection 500m 

Angle of Fault from Injection 45 ∘ 

Table 1: Fault parameters in generating seismicity rate 

The seismicity rate of the reservoir is estimated based on 

the pressure evolution in the active fault which affects the 

shear strength of the formation. The relationship of shear 

stress and strength provides information on seismicity. For 

induced seismicity, the shear strength changes depending 

on the fluid pressure in the fault. Shear strength (𝜏𝑠) is 

given by the equation: 

 𝜏𝑠 = 𝑓𝑠(𝜎𝑛 − 𝑝) 

Where 𝑓𝑠 is the friction coefficient, 𝜎𝑛 is the normal stress, 

and 𝑝 is the fluid pressure. 

The fault is considered stable and will not trigger 

earthquakes if the shear strength is larger than the shear 

stress. However, when there is fluid injection, pressure 

build-up will decrease the shear strength. If this continues 

and the shear strength decreases until it equals the shear 

stress, i.e., 𝜏𝑠= 𝜏, then an earthquake will be triggered. The 

pressure build-up required to trigger the first earthquake is 

the critical pressure (𝑝𝑐𝑟𝑖𝑡) of the fault.  

To estimate the total seismicity rate, the fault is divided into 

equal segments (∆𝑥). For each segment in which  𝜏 <  𝜏𝑠, no 

seismic event is expected. If 𝜏 = 𝜏𝑠  , the fault is expected to 

reach failure and thus a seismic event occurs. There is no 

case in which  𝜏 >  𝜏𝑠. Given, this, the average number of 

events (N) generated in the fault at a given length (L) and at 

a given time (t) is (Dempsey and Suckale, 2017): 

𝑁 =  𝑘 ∫ ∫[∆𝜏(𝑥, 𝑡) −  ∆𝜏𝑠(𝑥, 𝑡) 𝛿(𝜏(𝑥, 𝑡) −  𝜏𝑠(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

𝑡

0

𝐿

0

 

The 𝑘 in the equation is a proportionality constant that 

accounts for other relationships between the stress and 

microseismicity. This constant can also be used as a 

parameter to scale the integrated seismicity rate to choose 

the total number of earthquakes that are modelled. The 

second part of the equation [𝛿(𝑥)] is the Dirac delta 

function, which has the following properties: 

 𝛿(𝑥) = {
0,   𝑥 ≠ 0
∞, 𝑥 = 0

      and ∫ 𝛿(𝑥)𝑑𝑥 = 1
∞

−∞
 

Given the pressure data of the fault based on the fault 

details stated above, the number of events is then 

calculated. For our study, we assign the critical pressure, 

𝑝𝑐𝑟𝑖𝑡 = 0, and the number of segments (Δx) to 200. The 

seismicity rate is simulated for the 5 year duration of the 

reservoir simulation (Figure 4).  

Injection Well
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(a) 

 

(b) 

Figure 4: (a) Average total seismicity generated on the 

fault over time. (b) Seismicity rate (number of 

events per day) over time 

 

2.1.4 Generation of MEQ Data 

Earthquake occurrence contains an element of randomness: 

the magnitude, location, and the time cannot be predicted 

ahead of time. The uncertainty of earthquake triggering can 

be described by a Poisson point process given that: 

1. The occurrence of earthquake is random within a given 

time period, and 

2. The events are independent of each other. 

 

The seismicity rate gives an idea of how many seismic 

events may occur in a given time interval. However, due to 

its random nature, the number of events in a time interval 

may not be exactly the same as that seismicity rate 

integrated over that interval. For example, the seismicity 

rate in a particular area might be 10 events per year on 

average, however, the actual recorded number of events 

could be 9 in one year, 11 the next, and 12 the year after.  

 

In this paper, the discrete Poisson distribution is used to 

generate random events within a given time interval. The 

synthetic earthquake data we generate is random so that 

each time we rerun the simulation, different earthquakes are 

obtained (Figure 5). The dataset may be completely 

different but both sets still represent the same seismicity 

rate. The first dataset presented in Figure 5 has about 3000 

MEQs and we use this as the synthetic MEQ data for 

inverse modelling. 

 

 

(a) 

 

(b) 

Figure 5: Seismic datasets generated using Poisson 

distribution (two different dataset of same 

seismicity rate) 

 

2.2 Inverse Modelling 

Calibration using the MEQ data is done by adjusting 

reservoir parameters in order to match approximately the 

occurrence times of earthquakes. To achieve this, we run 

several forward models of the TOUGH2 reservoir 

simulation, convert the pressure output to a seismicity rate, 

and then compare this to the synthetic MEQ data. Due to 

uncertainty in the earthquake observations, the reservoir 

parameters cannot be established uniquely. They are instead 

represented as a probability distribution. From basic 

knowledge of the permeability of geothermal systems, the 

lower and upper bounds of permeability are assumed. For 

natural geothermal systems, the value of the bulk 

permeability typically lies between the range of 10-14 to 10-

13 m2 (Wallis, 2015). We guess permeability values in this 

range and then run a forward simulation for each to 

generate different seismicity rates (after Fig. 4). For this 

study, we considered 100 forward model runs of different 

permeability values ranging from 5.0x10-14 to 5.0x10-13 m2. 

These seismicity rate models are then scored using the log 

likelihood distribution for a non-homogeneous Poisson 

process given by Lindqvist and Taralsden (2013): 
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𝐿𝐿𝐾 =  ∑ ln(𝜆(𝑡𝑖 , 𝜃)) − ∫ 𝜆(𝑢, 𝜃)𝑑𝑢

𝑡𝑛

0

𝑛

𝑖=1

 

In this equation, 𝜃 is the parameter value we are seeking to 

constrain in the seismicity rate model, which in the case of 

our study is the permeability of the fault. The MEQ data is 

compared to the seismicity rates generated from the range 

of permeability values, then all LLK values are plotted to 

generate a likelihood distribution. This summarizes the 

estimated permeability of the reservoir in a probabilistic 

sense. For the MEQ data generated from the synthetic 

model, the likelihood distribution is shown in Figure 6. As 

seen in the plot, the permeability of 1x10-13 used in the 

synthetic reservoir model occurs within the range of most 

likely estimate value which gives us the higher confidence 

of obtaining a well-calibrated model. 

 

 

Figure 6: Likelihood distribution of 100 forward model 

runs to estimate permeability of the reservoir 

using the 6832 synthetic MEQ data. The black 

dashed line shows the true value used to generate 

the synthetic data. 

 

The likelihood distribution shown above is computed based 

on 6832 MEQs simulated from the synthetic model. While 

it is quite narrow and centred on the true permeability 

value, this changes depending on the number of MEQ data 

available for calibration. For example, a dataset with fewer 

MEQs (say, from a shorter period of time) will be wider, 

reflecting greater uncertainty when less data are available 

for calibration (Figure 7a). We have considered three 

examples, for earthquake data gathered over 1, 2 and 5 

years with 6247, 6392, and 6832 events, respectively. It is 

clear that greater confidence in the estimated permeability 

is achieved for longer periods of seismic monitoring, 

because the likelihood distributions are narrower and 

peaked closer to the true permeability value.  

A similar response of the likelihood distribution is observed 

when there is less MEQ data gathered within a fixed span 

of time (Figure 7b). This corresponds to the situation of 

seismic networks of varying sensitivity. As an example, a 

dataset with MEQ recorded 6832 events in 5 years gives a 

higher confidence (less uncertainty) as compared to datasets 

of 70 or 700 events. Worse still, there is a degree of 

arbitrariness due to the random nature of the events. For 

example, a different set of 70 events, drawn from the same 

underlying earthquake distribution, yields a quite different 

likelihood distribution. 

3. CONCLUSION 

This paper presents a theoretical method for the use of 

microearthquake data in the calibration of reservoir models, 

specifically in the estimation of permeability. The 

occurrence of miroearthquakes depends on simulated 

pressure build-up on a fault due to nearby injection. As 

pressure increases, yield strength decreases, which 

promotes rock failure and triggers seismic events. Whether 

simulated pressure increase in the fault is sufficient to 

trigger an earthquake is based on the critical pressure of the 

reservoir. We use these ideas to first simulate the average 

number of events along a fault (the seismicity rate), and 

then use this information to generate random earthquakes 

(synthetic data). 

 

(a) 

 

(b) 

Figure 7: Likelihood distributions for different synthetic 

MEQ datasets: (a) a shorter observation period, 

and (b) a less sensitive network (bottom). 

 

Calibration of a reservoir model using MEQ data is based 

on a likelihood approach. Given some earthquake 

measurements, the method outputs a probability distribution 

8x10-14 9x10-14 1.3x10-13

8x10-14 9x10-14 1.3x10-13

6x10-14 8x10-14 3x10-13 4x10-13
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for reservoir permeability, which has a strong control on 

pressure build-up and hence seismicity. Our approach to 

inverse modeling was to generate several forward runs with 

different permeability values and to compare the simulated 

seismicity for each against a set of synthetic MEQ 

observations (using the log likelihood distribution for a 

nonhomogeneous Poisson process). Our results suggest that 

it is possible to identify reservoir parameters, providing 

there are a sufficient number of events recorded. However, 

this requires that we know with high confidence other 

parameters on which the model relies. When there is less 

MEQ data, the probability distribution for permeability is 

wider and the uncertainty is greater. 

The next step in this study is adapting our approach to 

estimate multiple reservoir parameters, e.g., reservoir and 

fault permeability separately. We would then look to apply 

the approach to a real set of measured MEQ data.  
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