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ABSTRACT 
The Leyte geothermal production field is among the largest 
developed geothermal system in the world. It has a total 
installed capacity of 700MWe and more than 180 production 
and injection wells have been drilled over its more than 30 
years of production life. Several numerical models have 
been developed in the past for use in managing the 
production in the field. The recent numerical model has been 
updated with significant enhancements of previous models. 
The model now uses a more efficient grid system with a 
finer grid resolution. It also includes the implementation of 
dual porosity and automated model calibration.  

The model is presently in the calibration stage. Significant 
progress in calibration has been accomplished in the past 
months and the model is now in a satisfactory state for use 
in prediction of future reservoir response. Nonetheless, 
calibration effort is still being continued to get a still better 
match of model response to the measured data. Therefore, 
this paper is a work-in-progress report of the latest 
numerical simulation effort on the Leyte geothermal 
production field. The purpose of this paper is to convey the 
challenges encountered during the development and 
automated calibration of the model and how some of those 
challenges were handled. 

1. INTRODUCTION  
The Leyte geothermal field is a large liquid dominated 
geothermal system located in central Philippines. It is 
composed of two independent hydrothermal systems, 
namely: (1) Tongonan and (2) Mahanagdong. Commercial 
operation in the field started in 1983 with the commissioning 
of the 112.5 MWe Tongonan 1 power plant. The most recent 
power plants built, Mahanagdong A and B, were 
commissioned in 1997. At present, the field has a total 
installed capacity of 700MWe with more than 180 wells 
drilled.  

The Tongonan system within the Leyte geothermal 
production field is a high temperature geothermal system. 
Temperature greater than 300oC have been measured in 
wells near the upflow area of the field. There was also a 
natural two-phase zone present in the shallow depths around 
the upflow region. The large scale production that started in 
1997 triggered intensive boiling, a result of a massive 
pressure drawdown. Cooling from injection returns soon 
followed, most notably in wells close to the injection area. 
Other processes affecting the steam availability in the field 
include casing erosion (brought about by increase in 
enthalpy of some wells combined with high level of 
suspended solids), wellbore blockage (due to mineral 

scaling), brine and condensate return, enhanced groundwater 
inflow and feedzone sharing. 

In the Mahanagdong system, temperatures higher than 300 

oC were also measured in some wells. The production zone 
in Mahanagdong was generally deeper than in Tongonan. 
Signs of boiling were observed after the start of commercial 
operation but development of a two-phase zone was slowed 
down by cooler groundwater inflow and brine returns from 
the northern and southern injection area. 

2. DESCRIPTION OF THE MODEL  
In 2010, a 3D numerical model of the Leyte geothermal 
production field was developed by Ciriaco et al. This was 
the first model that is large enough to cover both the 
Tongonan and Mahanagdong reservoirs. The model was 
used to investigate the future steam flow trends in the field 
under different production scenarios, estimate the make-up 
well requirements and come up with a long-term drilling 
schedule.  The present model is based on the 2010 model but 
modifications were introduced to address some of the 
identified shortcomings of the 2010 model.  

2.1 Model Grid 
The model is set to cover a large area of 1,800 km2 (40km x 
45km). The production area is confined to a smaller 56 km2 
(4km x 14km) region around the center of the model. One 
future improvement that the previous modeling team 
recommended was the use of smaller grid blocks in the 
production area, finer than the 500m x 500m that they used. 
It was thought that a finer grid would provide improved 
accuracy and would be better to handle the dense spacing of 
the wells in the field. 

 

Figure 1: Grid structure for the Leyte Geothermal 
Production field numerical model 
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The grid structure for the new model of Leyte geothermal 
field is shown in Figure 1. The PyTOUGH library was used 
to construct this grid. The block size in the production 
region for this model is 300m x 300m. The present model 
has a total of 32,835 active blocks. This is only about 20% 
more than the previous model which has 27,509 grid blocks. 
The 5-sided Voronoi grid refinement technique suggested by 
Croucher and O’Sullivan (2013) was used to achieve this 
improved resolution without a significant increase in the 
total number of grid blocks.  

 

Figure 2: Feedzone location histogram and layer 
structure of the model.  

Both the old and new model has 24 active layers. The layers 
structure is shown in Figure 2. Layers with a high feedzone 
density were set to have a thickness of 100m.  

2.2 Dual Porosity Grid 
A dual porosity representation was used so that the model 
can capture the thermal breakthrough observed in the field 
more accurately. The latest PyTOUGH library contains a 
function to generate MINC blocks from a single porosity 
model. The use of the PyTOUGH library was preferred over 
TOUGH2’s built-in MINC generator in converting the 
present model to dual porosity because of its flexibility. In 
the built-in MINC generator in TOUGH2, MINC is 
implemented to all blocks in the model. With PyTOUGH, 
we were able to apply MINC to selected grid blocks only, 
thereby avoiding an unnecessary increase in the total number 
of blocks. The MINC function in PyTOUGH also allows 
one to customize the fracture and matrix blocks naming 
convention. This feature eliminated the problems with 
duplication of matrix block names normally encountered in 
models with many grid blocks when using TOUGH2’s 
MINC function. Lastly, the PyTOUGH library provided an 
easy-to-use utility for generating a dual porosity initial 
condition file from a single porosity INCON or SAVE file 
(the importance of this feature is explained later in this 
paper). 

The dual porosity model of the Leyte geothermal field used 
3 interacting continua (1 fracture and 2 matrix blocks) with 
corresponding volume fractions of 2%-10%-88%. The 
permeability for the matrix blocks were set to 0.001E-15 m2. 
Fracture spacing was set to 150m and the fracture porosity 
was set to 90%. At the time of writing, only the fracture 
permeabilities were included as parameters to be estimated 
during calibration. MINC was applied only to the grid 

blocks within the production area.  The dual porosity model 
has a total of 59,185 grid blocks (about twice the number of 
blocks in the single porosity model). 

2.3 Permeability distribution and visualization  
At present, assigning rock-types into the model is carried out 
using the commercially available software Petrasim. 
Petrasim is a graphical user interface for TOUGH2. Two of 
the most useful features offered by Petrasim include (1) the 
windows interface for easy assignment of rock-types to the 
model blocks and (2) the ability to overlay figures like 
conceptual model, geophysical boundary and geologic maps 
on top of the model grid (which can be used as guide in 
assigning rock-types). In the future, we wish to utilize more 
powerful tools like Leapfrog for this task.  

One problem with Petrasim is that it cannot read a model 
grid generated by other utilities like PyTOUGH. Moreover, 
it is also difficult (if not impossible) to replicate the desired 
grid structure for the Leyte model in Petrasim. Fortunately, 
Petrasim is capable of exporting a TOUGH2 input file and a 
there is a utility in PyTOUGH that can read the grid 
information from this exported input file then transfer them 
to a PyTOUGH generated TOUGH2 input file.  

 

Figure 3: Petrasim model used for assigning rock-types 
into the working model.  

     

Figure 4: Structure and rock-type distribution of the 
Petrasim model (left) and the resulting rock-type 
distribution in the working model (right). 

Figure 3 shows the Petrasim model used for assigning rock-
types. It also shows a conceptual model map overlaid on the 
grid which served as guide in assigning the rock-types. The 
Petrasim model was made in such a way that the grid sizes 
in the production region is the same as that with the working 
model. After setting/modifying the rock-type distribution in 
the Petrasim model, a TOUGH2 input file is generated using 
Petrasim’s export function. A python script then reads this 
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exported file and copies the rock-types assigned in each 
blocks into the working model.  

2.4 Boundary conditions 
The top boundary of the model was set at the approximate 
elevation of the top of the water table and is connected to a 
large atmospheric block. Estimating the top of the water 
table was not a straightforward task because the elevation to 
be assigned for all the columns in the model is not easy to 
interpret from the well data. It was assumed that the 
elevation of the water table varies proportionally with the 
topographic elevation. These topographic elevations were 
then multiplier by a factor and fitted into the columns of the 
model using PyTOUGH’s fit_surface() command. This 
process was repeated many times until the pressure in the 
model matched those that were measured in the well.  

The upflow in the model is represented in the model by 
injecting water at a specified temperature at the bottom-most 
layer. Springs were defined by blocks with high vertical and 
horizontal permeability from the top of the model down to 
the main reservoir. Mass input at the bottom which 
represents the upflow in the field and the springs at the 
surface of the model were assigned in Petrasim and 
transferred into the working model in the same manner as 
the rock-types. Allocating upflows and springs in Petrasim 
was convenient because their locations were already 
indicated in many conceptual model maps of Leyte. By 
overlaying these maps on the Petrasim grid, it was easy to 
locate which blocks in the model corresponds to these 
upflow and outflow regions.  

3. CALIBRATION 
The model underwent the usual natural state calibration and 
production history matching. Data used to calibrate the 
model is composed of interpreted downhole temperatures 
from 140 wells, PCP pressure from 76 wells, pressure vs. 
time data from 57 wells and enthalpy data from 119 wells. 
Calibration of the model was carried out using a mix of 
manual calibration and automated parameter estimation.  

The automatic parameter estimation was carried out using 
the BeoPEST software and a 32-core server from Amazon. 
Tikhonov regularization and singular value decomposition 
were both employed in the inversion process. In theory, the 
inversion difficulties resulting from parameters with low 
sensitivity should have been taken care of by Tikhonov 
regularization and singular value decomposition. Experience 
from calibrating this model, however, showed that the 
regularization settings that were used were not very 
effective. Manually identifying the non-influential 
parameters and then fixing them at their preferred values 
ended up giving better results.  

3.1 Parameterization 
Parameters estimated in the model include permeability, 
porosity, upflow mass input and upflow enthalpy. The 
elevation of the top boundary was also adjusted during the 
early stages of the model development to match the depth of 
the water table that was inferred from the measured 
pressures in the wells. In the present model, there are 36 
rock-types defined. Permeability parameters included the 
horizontal and vertical permeability of each of these rock-
types.  

A pilot point parameterization scheme was employed after 
obtaining a set of rock-type permeability values that result in 
a reasonably good match between the modeled results and 

observed data. This was done to allow the model to exhibit 
heterogeneity in the permeability in hope that this would 
give an improved match to the measured data. The pilot 
point parameters were set as multipliers to the rock-type 
permeability. To implement this, two models were needed, 
namely: a primary model which has the 36 rock-types and a 
secondary model in which each block is given its own rock-
type (to allow individual blocks to have their own 
permeability values).  

A total of 576 pilot points were scattered around the 
production area in the model. Multiplier values were 
assigned to each of the pilot points. These were set equal to 
1.0 prior to the pilot point calibration so that the 
permeability distribution of the secondary model was 
exactly the same as that of the primary model. Ordinary 
kriging interpolation was used to obtain the multiplier for 
each of the blocks in the model. This kriging interpolation 
from the pilot points to the TOUGH2 model grid was done 
autonomously through the use of the geostatistical software 
SGEMS and some python scripts. Once the multiplier for a 
particular block is obtained, a python script then searches the 
rock-type that is assigned to it in the primary model, obtains 
the permeability value of that rock-type, applies the 
multiplier to that permeability value and write the new 
permeability value to the secondary model. An example of 
the permeability distribution obtained after the inclusion of 
the pilot point parameters in the model calibration process is 
shown in Figure 5.  

 

Figure 5: Permeability distribution obtained after 
application of pilot point parameterization. 

3.2 Use of a single porosity model for natural state 
calibration 
For the natural state model, the single porosity model was 
observed to produce a very similar temperature and pressure 
values compared to the dual porosity model. This is 
illustrated in Figure 6 where the difference in temperature 
and pressure between the block from the single porosity 
model and the corresponding fracture block in the dual 
porosity model at one layer in the model is shown to be very 
small (<9E-10 oC for temperature and <4E-6 Pa for 
pressure). In generating this plot, the single porosity model 
was set to run for a total simulation time of ~30 million 
years. Using a python script, the resulting SAVE file from 
this model was then converted into an INCON file that is 
compatible with the dual porosity model. The dual porosity 
model is then allowed to run for ~30 million years. Given 
this finding, it was concluded that running the much bigger 
dual porosity model to natural state is unnecessary and can 
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be skipped totally, thus cutting the run-time for the natural 
state model by several hours. 

  

(a) 

   

(b) 

Figure 6: Pressure (a) and temperature (b) difference for 
a single porosity and dual porosity natural state models.  

3.3 Suppressing boiling for faster convergence in 
TOUGH2 
In TOUGH2, models with single phase fluid generally run 
faster than models with two-phase fluid. In the early stage of 
the natural state and production history calibration, the 
atmospheric block was set at a significantly higher pressure 
than atmospheric pressure in order to prevent the fluid in the 
model from boiling. This allowed the model to run in a 
relatively shorter time.  

   

 

Figure 7: Natural state temperature (left) and pressure 
(right) results for two models with the same permeability 
distribution. Boiling is suppressed (y-axis) in one and 
allowed (x-axis) in the other. 

Figure 7 shows a plot comparing the modeled natural state 
temperature and pressure in the wells from two models with 
the same permeability distribution but with boiling 

suppressed in one model (by using high atmospheric 
pressure) while allowed in the other. Boiling was suppressed 
by increasing the atmospheric block pressure by 15MPa. In 
the pressure plot, it is seen that the pressure is basically just 
shifted by 15MPa. The temperature plot suggests that the 
temperatures resulting from the model with high 
atmospheric pressure are almost the same as the 
temperatures obtained from the model with the correct 
atmospheric block pressure. There is however a difference 
of about 15oC in some temperatures. Nonetheless the speed-
up obtained using a non-boiling model benefited the early 
stages of the natural state calibration where the temperature 
mismatches were still very large.  

 

Figure 8: Comparison of production pressures for two 
models with the same permeability distribution, but with 
boiling suppressed (x-axis) in one and allowed (y-axis) in 
the other. 

A similar technique was also applied for production history 
pressure matching. Figure 8 shows a plot of the pressure in 
the pressure monitoring blocks obtained from a non-boiling 
model against a boiling model. Unlike the results from the 
natural state models, the relationship is not linear but a 
polynomial curve was able to fit the data. It was also 
observed that this relation changes when permeability values 
change. Hence, this curve needs to be updated when a 
significant change in the permeability is made. In this plot, 
the pressure from the Tongonan wells were fitted using a 
cubic polynomial, while the pressure from the Mahanagdong 
wells were fitted using a quadratic polynomial. These 
polynomial curves enabled us to run the much faster non-
boiling model then calculate what the pressure would be if 
the boiling model was used, with reasonable accuracy, and 
saving a significant amount of model development time.  

3.4 Enthalpy matching 
Upon reaching a reasonable match for the natural state 
temperature, PCP pressure and production pressure trends, 
the atmospheric pressure now needs to be set at the correct 
value in preparation for flowing enthalpy matching. 
Permeability and porosity were again adjusted in an attempt 
to replicate the enthalpy measured from the wellhead of each 
well. Because the model was now allowed to boil, the run-
time increased significantly making this process slower. 
Significant progress was attained after several attempts of 
matching the enthalpy. Nonetheless, many wells still showed 
enthalpies that are different from the measured ones 
especially those wells that have feedzones in the two-phase 
region of the reservoir. 

Another factor that may affect the flowing enthalpy from a 
well is the proportion of flow from different feedzones for 
wells with more than one feedzone. All of the wells in the 
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field produce from multiple feedzones. This proved to be a 
challenge because these wells do not all have flowing 
surveys available to infer the proportion of the mass flow to 
be assigned to each feedzone. Flowing surveys for a few 
wells do exist but most of them were carried out at well head 
conditions that were different from normal operating 
conditions (e.g. at highly throttled condition). Hence, the 
mass flows assigned to each feed zone during the production 
history runs are highly approximate.  

One approach that we employed for matching the enthalpy 
in the Leyte model was adjusting the flow from individual 
feedzones in the well. Again, this was an iterative process 
that required several tries. Fortunately, the flowing enthalpy 
at the wellhead resulting from changing the feedzone 
distribution can be estimated rather quickly without having 
to run the model again in TOUGH2. Upon completion of a 
TOUGH2 production history run, the individual feedzone 
enthalpy is available from the output file. Assuming a two 
feedzone well with feedzone enthalpies (as obtained from a 
TOUGH2 run) equal to ℎ1 and ℎ2, the new enthalpy value 
(𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛) after modifying the feedzone proportion to 𝑥𝑥1𝑛𝑛𝑛𝑛𝑛𝑛  
and 𝑥𝑥2𝑛𝑛𝑛𝑛𝑛𝑛  (𝑥𝑥1𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑥𝑥2𝑛𝑛𝑛𝑛𝑛𝑛 = 1) may be calculated using 
the simple energy balance equation:  

𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥1𝑛𝑛𝑛𝑛𝑛𝑛  ℎ1 + 𝑥𝑥2𝑛𝑛𝑛𝑛𝑛𝑛  ℎ2 

It is important to note that changing the mass distribution for 
the feedzone in the well will have an effect on the enthalpy 
from the individual block. Our experience however showed 
that the effect is not very large. Regardless, it is still 
advisable to run a new model that reflects this new feedzone 
flow proportion once the desired matches in the well head 
enthalpies are attained.  

3.5 Calibration results 
Most of the measured data used for calibrating the model is 
composed of the natural state temperature and production 
history enthalpy and pressure. The current states of the 
matches for these data are presented in Figure 9 to Figure 
12. From Figure 9, it can be seen that temperature matches 
obtained from the current model are similar to those for the 
old 2010 model. Enthalpy matches (which are reflected by 
the matches in the steam flow) are seen to be better for the 
present model than the old one (see Figure 10). Production 
pressure matches for Tongonan reservoir in the present 
model are about the same as for the old model. In the 
Mahanagdong area, the pressure matches are better in the 
new model than for the 2010 model.  

 

Figure 9: Histogram of natural state temperatures 
showing results for the 2010 and 2016 model. 

 

Figure 10: Measured vs modeled steamflow for the 2010 
(red) and 2016 (blue) model 

 

Figure 11: Representative pressure match for the 
Tongonan reservoir 

 

Figure 12: Representative pressure match for the 
Mahanagdong reservoir 

4. CHALLENGES AND ISSUES WITH MODEL 
CALIBRATION 
There were several issues and challenges encountered 
throughout the course of model calibration. Some of these 
issues significantly slowed down the progress of the 
calibration. Some of these issues and the work-around used 
to overcome these challenges are discussed here.  

Convergence problem: TOUGH2 employs adaptive time-
stepping allowing it to reduce the time step (by a factor 
given by REDLT) if convergence is not attained after a 
certain number (given by NOITE) of Newton-Raphson (NR) 
iterations or increase it by a factor of 2 if convergence 
occurs in less than a certain number (given by MOP(16)) of 
NR iterations. By design, TOUGH2 does not update the 
primary variables when convergence is achieved after one 
NR iteration. This behavior was found to cause the 
simulation to stall for the present model when difficulty 
occurred with the NR iteration. This stalling problem is 
illustrated in Figure 13 and was encountered on several 
occasions during natural state model calibration.  
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Figure 13: Screenshot of a model run in which TOUGH2 
got stuck in a problematic time step. 

In this model, a bad time step (in which NR convergence 
was not attained) was encountered causing TOUGH2 to 
reduce such time step to a smaller value. When the reduced 
time step is used, convergence is attained after one NR 
iteration. This causes the time step to double without 
updating the primary variables (as indicated by both DX1=0 
and DX2 = 0 in Figure 13). The time step kept increasing 
but at each increase, convergence is still attained with one 
NR iteration until the time step becomes equal or greater 
than the bad time step. Because no changes in the primary 
variables happened in the previous iterations, TOUGH2 is 
back in the same situation where the linear solve failed again 
repeating the cycle until the maximum number of time step 
(MCYC) is reached. 

One solution to this problem is to use an appropriate value 
for REDLT. For example, setting REDLT equal to 1.1 will 
cause TOUGH2 to reduce the time step slightly below the 
bad time step after non-convergence of the linear solve and 
hopefully after a few time step reductions, TOUGH2 will 
find a time step in which convergence is achieved after two 
or more NR iterations (we want to avoid convergence with 
one NR iteration so that update in the primary variables 
happens). Note that there is no guarantee that this solution 
will work because it is difficult to know in advance what 
time step will result in convergence after 2 or more NR 
iterations. In general, REDLT equal to 2, 4, 8, and so on are 
bad choices and likely to result in this problem.  

Another way to prevent convergence after one NR iteration 
is by setting small values for the convergence criteria (RE1 
and RE2). However, this may result in longer run-times and 
is again not guaranteed to work. Those who have access to 
the TOUGH2 code (and are capable of modifying and 
recompiling it) may instead opt to modify it and force it to 
always make at least two NR iteration. This modification 
was already present in iTOUGH2 and can be activated by 
setting MOP2(1) variable equal to 2. The latest version of 
AUTOUGH2 also has this modification implemented. In the 
present model, this convergence problem was no longer 
encountered after the modification was made in 
AUTOUGH2. 

Densely spaced wells: Many wells in the field are closely 
spaced causing these wells to share blocks with adjacent 
wells in the model. Furthermore, some wells show 
temperature data that is different from their neighboring 
wells with which they share a common block. An example 
of this problem is shown in Figure 14. In this figure, the 

measured temperature for the well is shown by the red line. 
Temperature data from the six other wells (which are listed 
in the plot) are shown as green circles. This type of data was 
found to cause difficulty with automatic calibration in PEST 
because of the fact that matching one well will result in a 
mismatch with one or more of the others.  

  

Figure 14: An example of a well sharing a block with 
adjacent wells. The red line is the temperature of the 
well, green circles are temperatures from other wells 
sharing the same block and the blue line is the modeled 
temperature. 

The use of finer blocks in the model has partially solved this 
problem. Nevertheless, multiple wells sharing blocks with 
other wells are still unavoidable especially at shallow 
depths. At present, the solution employed was to evaluate 
each of the blocks shared by multiple wells, decide which 
well has the most reliable value (or best reflects the average 
temperature) and then remove the data from the other wells 
(or reduce their weights by significant amount). With this 
fix, PEST only sees one set of data to match. However in 
assessing the results, plots similar to that shown in Figure 14 
are generated for all wells to serve as a reminder of the 
presence of adjacent wells in the same blocks and their 
corresponding temperature data.  

Production history data: The flow measurements in the 
wells were, at best, done once every 3 months. In the model, 
well flows that are used for production history matching are 
provided with in a monthly period. For production wells, 
monthly mass flows are easily estimated using the well 
output curves (which are updated after every flow 
measurements) and the daily well head pressure data. This 
method of estimating flows from the production wells is 
relatively robust and is able to capture even the daily 
changes in well utilization. However for injection wells, 
estimation of flows is very crude. It normally involved 
simple interpolation between succeeding flow tests. Since 
flow tests were typically 3 months apart, changes in the 
injection well utilization in between successive flow tests is 
very easy to overlook.  

Sometimes, simple checks can be made to detect potential 
problems with the data used in the model. The plot in Figure 
15 shows the total mass extraction (black circle) and 
injection (blue circle) from all the wells in one region of the 
field. Except for the apparent noise in data, there is nothing 
unusual that can be inferred.  However when we subtract the 
mass injection from the mass extraction and compare the 
results with the estimated steam flow delivered to the power 
plant (red circles vs black line), an inconsistency is now 
more evident. As can be seen from the plot, the steam flow 
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calculated from mass extraction and injection data is lower 
than the steam flow delivered to the power plant. 

 

Figure 15: Comparison of the steam flow delivered to the 
power station and the calculated steam from mass 
extraction and injection (excluding condensate) data. 

Investigation later revealed that the main reason for the 
inconsistency is the overestimation of the water flow in the 
injection wells. Some of this overestimation is a result of 
data obtained when injection capacities of the wells were 
measured rather than the injection load. In these cases, the 
flow to the other wells is diverted to the well of interest to 
determine how much it can accept. Once the measurement is 
completed, the wells are then put back to their usual 
injection loading. The recorded flow is however higher than 
the normal loading resulting in an overestimation of flow in 
the calculation of the monthly injection rate. This small 
detail tended to get lost as data were processed for use in the 
model. Correction was applied to the data resulting to the 
plot in Figure 16 which shows more consistent steam flow 
values. Even so, proper flow measurement is still the best 
solution to ensure the reliability of the data that is being used 
in the model.  

 

Figure 16: Comparison of steam flow to the power 
station and the calculated steam from mass extraction 
and injection data after applying the correction. 

6. SUMMARY AND FUTURE WORKS 
We have successfully developed a new numerical model for 
the Leyte geothermal production field in which we achieved 
improved resolution and better matches with some of the 
measured data compared to the old model. We have also 
successfully upgraded the model from single porosity in 
2010 to dual porosity in the present model. Application of 
the work flow described in this paper and the use of modern 
tools like PyTOUGH, Petrasim, PEST and SGEMS enabled 
us to speed up the model development and calibration. The 
model has now achieved satisfactory matches to the data and 
we expect the model to produce reliable predictions. Even 
so, calibration effort is still being made and more progress is 
being accomplished. 

The work presented here is part of a research project on 
uncertainty quantification for geothermal models. 
Ultimately, we want to use the present calibrated model for 
application of uncertainty quantification techniques.  
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