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CARBON AND HYDROGEN ISOTOPE COMPOSITIONS OF GEOTHERMAL GASES
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ABSTRACT

Carbon and hydrogen isotop ic compositions are com-
pared f o r the gases methane, hydrogen and carbon
dioxide f r o m Ngawha, Wairakei ,Ohaaki-Broadlands
and T i k i t e r e Springs). The d i f f e r e n t
areas have d i f f e r e n t isotop ic compositions w i th
some general relat ionships t o reservo i r temperature
and in fe r red or ig ins. The iso top ic exchange o f
hydrogen wi th water was found t o ind icate reservo i r  
temperatures from most spring samples but often,
higher than measured temperatures i n wel l samples.
Indicated temperatures assuming e q u i l i b r i a
between and are higher than mea-
sured maxima. This dif ference may be due t o
e i t h e r  p a r t i a l  isotop ic equ i l i b ra t ion  o r  t o source
conditions o f methane. Possible sources f o r carbon
dioxide and methane are shallow o r deep crusta l
(inorganic o r organic) mater ial w i t h the
1it y o f some juveni 1e contr ibut ion.

INTRODUCTION

Studies o f the l i g h t element stable isotopes o f
geothermal gases should have advantages i n showing
aspects o f t h e i r o r i g i n and previous h i s t o r y which
may be less af fected by near surface conditions 
than would the aqueous f lu ids . Previous studies
and reviews Panichi and Gonfiant ini , 1978;
Truesdell and Huls ton, 1980) have emphasised
iso top ic exchange and geothermometry. However,
Des Marais e t . have recent ly in fe r red
t h a t the carbon isotop ic composition o f geothermal
methane and other hydrocarbons from North American
geothermal f i e l d s have or ig ins independent o f the
carbon dioxide despite and being approxi-
mately i n isotop ic  equi l ibr ium a t Cerro Prieto.

The carbon isotop ic composition o f geothermal
gases has been the subject o f many studies -but
on ly a few have made hydrogen isotop ic measure-
ments.
i n the three molecules and and
exchange may be a t a d i f f e r e n t  r a t e  t o tha t o f
carbon.

The isotopes o f hydrogen can be measured

This study considers . both hydrogen and carbon
isotope compositions o f geothermal gases from four
New Zealand geothermal f i e lds .
posit ions o f the gases carbon dioxide, methane and
hydrogen are then evaluated f o r information on
t h e i r o r i g i n and t h e i r usefulness f o r geothermo-

The isotop ic com-

metry based on isotop ic  f ract ionat ion between
species.

THE CARBON-13 GEOTHERMOMETER

Fig. 1shows the values f o r carbon dioxide and
methane and the A temperatures assuming
t h a t ibr ium occurred. Isotop ic tempera-
tures are near 400 C f o r the Ngawha and Broadlands
samples, w i th no dif ference between and
springs a t Ngawha. These temperatures are higher
than any wel l temperatures a t e i t h e r
f i e ld . The A temperatures a t
Wairakei and Tik i tere, near 350 C, are s im i la r t o
each other, but w i th a wider a t Wairakei due

1s w i th values have therefore
lower indicated A C temperatures and are those
wi th high gas contents and higher enthalpies. 

Using wel l data only t o sure tha t the f l u i d s are

temperatures have been p lo t ted (Fig. 2) against
the temperatures calculated from s i1 sol ubi1 t y .

t o the var ia t ions o f 615 Wairakei

1 characterised the A indicated
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Fig. 1: f o r carbon dioxide and methane 

springs and wel ls a t Ngawha (NG), wel ls a t
Wairakei (WR), Broadlands and springs a t
T ik i te re (TT) . The indicated temperatures are
f o r equi l ibr ium fract ionat ion, using the data o f
Richet e t . (1977).



Lyon and Hulston

-600

I I 1 I I 

T T

I

A
h

A

A

A

NG
WR A

0

I I I

200 280

Silica Temperature
13

Fig, 2: A C temperatures p lo t ted
against s i l i c a temperatures, f o r wel ls from
Wai rakei , ands and Ngawha.

Simi lar patterns show i f temperatures are
used. There are no regular patterns f o r e i the r the
Broadlands o r Ngawha wel l data, bu t there i s a
pos i t i ve corre la t ion f o r the Wairakei data and a
less corre la t ion f o r a l l the wel l data.
Thus the A temperatures could be used
as a guide f o r wel l but they would
n o t be precise. As the C equ i l i b ra t ion react ion
i s very slow by several orders o f magnitude com-
pared wi th the s i l i c a (o r geothermometer

1 and Hul 1980; ggenbach,
the A indicated temperature i s probably no t a
t rue r e f l e c t i o n o f the conditions i n the exploi-
tab le  reservo i r  but  i s defined by conditions o f
higher temperature a t an e a r l i e r period o f the
gas's h is tory .
tha t Broadlands and Ngawha, wi th t h e i r generally

However, these data appear t o show
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s im i la r reservoir temperatures, have s im i la r A 13C

temperatures, and t h a t we can estimate tha t
Wai rakei and T i k itere reservoir temperatures may
be simi lar .

Further, though one can argue tha t there are 
separate or ig ins for methane and f o r carbon
dioxide and he lack of appreciable

of a t reservoir tempera-
tures (Sackett and Chung, 1979; Giggenbach,
but t h i s does not preclude there remaining records 
o f h igher , f n temperatures.

I
a

13Comparison o f A temperatures wi th gas
temperatures calculated assuming forms from
raphi te and according t o and Panichi

show no pattern wi th a l l plotted,
bu t mate correspondence o f C, when
only the Ngawha resul ts are considered. This 
appears f o r t u i t ious i n view o f those authors

assumptions t h a t i s merely a
gas, and nitrogen i s l y atmospheric.

The indicated carbon-13 temperatures f o r the
a t Ngawha are the same as f o r the
springs, near 400 C. This shows tha t spring

are ref lect ions o f the deep gas 
6 C values and A temperatures. Thus

i s reasonable t o compare T ik i te re spring gas
C data wi th the wel l data from other areas.

DEUTERIUM THERMOMETERS

The three pai rs o f molecules and
cannot be considered independently since

a change o f one molecular composition would a f fec t
two geothermometers.
cu lar species and may be considered invar iant i n
composition except f o r 1 iquid-vapour separation. 
I n general, the assumption i s made tha t the
surface discharge represents the isotop ic com-
posi t ion o f l i q u i d water which i s the source o f
the water wi th which methane or hydrogen
brates.

Water i s the dominant mole-

Fig. 3 shows the values f o r hydrogen and
methane and the AD( temperatures.
equi l ibr ium temperatures between and H and
between and are detai led elsewhere
and Hulston, i n press).

Isotopic

The AD temperatures f o r Ngawha springs are about
for a l l three deuterium pairs, but the
values from the Ngawha wel ls are higher,

wi th AD( temperatures o f
400-500 C. AD isotop ic temperatures

% temperature . This suggests tha t t h i s tempera-
ture, although higher than a t any d r i l l e d depths,
has some signif icance i n the h is to ry o f the
f l u i d s . I n contrast, AD temperatures f o r

from springs a t T ik i te re are generally near
200 C which i s close to some chemical estimates.

the temoeratures for springs a t
to qive a reasonable estimate f o r

the reservoir , and t h i s oeothermometer was also
reasonable i n Iceland (Arnason
T ik i te re estimates o f near should be con-
sidered i n reservoir assessments there.

ve a about 380 C, which i s s im i la r t o the

these
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The Wairakei wel l data, however, have a much
greater scatter,  but w i th most

temperatures between 200 and C.
major exception i s from a t
we l l has a very low gas content and i s perhaps
contaminated by hydrogen from react ion w i th wel l
casing.
o f Wairakei wel ls has contr ibuted t o the unusually
large sca t te r o f the values i n Fig. 3.

METHANE COMPOSITION

A
This

It i s suspected tha t the gas content

The deuterium and carbon-13 compositions o f geo-
thermal methane (Fig. 4), show t h a t no consistent
re la t ionsh ip i s apparent for a l l samples
together.
more var iab le and generally lower deuterium content
than t h a t from the other three areas.

The Wairakei methane, however, i s o f

gases have been analysed f o r t h e i r and
C compositions by Schoell (1980) and these N e w

Zealand geothermal methanes are nearest t o h i s
type as shown i n Fiq. 4. other methanes

analysed by (1980 had 6 C values more
than and most had values more

negative than -175
North German coal-derived gases developed by high
temperature react ion o f humic ( ter restri source
rocks, and have low concentrations o f h iqher hydro-
carbons, as do these geothermal gases. During
heating a t 1ower temperatures, these sediments
have l o s t higher molecular weight hydrocarbons and

p ic a l ly 1ighter methane.
though wi th more pos i t i ve 6D values, has been
found i n the Basin, East Germany
and 1980) values ranging from -23
t o

The gases were

S im i 1a r methane,

0
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4: Methane isotop ic compositions. Geothermal
compared wi th German natural gas from

A: Schoell and B: and Wand (1980).
All other German data had

However, the New Zealand geothermal gases have
more negative 6D values than the German data. The
reason i s not known but Smith e t al . (1982) a lso
noted t h a t there were more values
i n the natura l methanes from than i n
Schoel l 's s im i la r samples ( a l l w i th C
from Germany.

Des Marais e t a l . using 13C analysis

have recent ly postulated tha t ind iv idual h
carbons (methane, ethane, propane, from
Yellowstone, Cerro Pr ie to and The Geysers geother-
mal f i e l d s are derived from decomposition of
organic matter i n the sediments w i th a corre la t ion
of heavier methane wi th higher temperatures. I t
has also been shown t h a t i n higher temperature
Cerro Pr ie to wells, and from longer term labora-
t o r y decomposi methane
more enriched i n 6 C Marais e t .
This i s probably due t o decomposition o f
matter t h a t has already l o s t some o f i t s
depleted radicals, and therefore the methane 6 C
composition tends t o approach tha t o f the or ig ina l
organic

Methane produced from organic matter decomposition
would have an isotop ic composition independent o f
t h a t o f the geothermal carbon dioxide. Fig.. 4
shows tha t our samples are somewhat s i m i l a r t o
other gases and implies they could be
formed i n a s i m i l a r way.

Magmatic gases are dominated by carbon dioxide and
hydrogen which should react t o form methane i n
increasing amounts as temperature decreases but
k i n e t i c a l l y  t h i s  does not occur very f a s t

ggenbach, 1982). o f unusual
isotop ic composition (6 C about has been
reported from the East Paci f ic Rise by Welhan
e t a l . and sedimentary sources are lack ing
there. The discovery o f bacter ia capable
o f l i v i n g a t 250 C and o f the bio log ica l produc-
t i o n o f methane i n deep sea geothermal springs
(Baross and Deming, 1983; Baross e t al., 1982)
casts fu r the r doubt on purely inorganic explana-
t ions f o r the or ig ins o f geothermal methane.
Therefore, as low biogenic methane
forms i n an apparent
wi th carbon dioxide, then t h i s could a lso be the
case wi th high temperature organisms.

C equi l ibr ium f ract ionat ion 

CARBON DIOXIDE COMPOSITION

13
The New Zealand geothermal have 6 C values
which are s ign i f icant13 heavier than s o i l carbon
dioxide ( t y p i c a l l y -24 Hendy, 1971). Within
a f i e l d . a t Wairakei), some var ia t ions
the average discharge may also ar ise from phase
separations i n the aquifer. Thus one gas sample
from a f i e l d may n o t necessarily be typ ica l , nor
represent the composition o f the t o t a l gas.

Carbon dioxide from thermal o f
carbonate would have 6 C values o f 0

and could be a s ign i f i can t source o f some
geothermal Juven' e carbon dioxide, however,
i s estimated t o have 6 C values between -5 and

(see A l l a r d e t a l . 1977). Mixtures o f

3



172

Lyon Hulston

these two sources ( and "juvenile") could
for geothermal gas compositions between

and -8 and recently Allard (1980) has suggested
tha t enriched C
portions of crustal

Most of the geothermal carbon dioxide analysed i n
this study has a carbon-13 composition in the
range -7 t d which is consistent w i t h other
estimates of magmatic carbon. Wairakei ,however,
has heavier carbon, w i t h a wider range, the range
(toward l ighter values) which can be explained by

ive outgassing. average Wairakei

Wairakei has a substantial component of carbon
dioxide from crustal (greywacke) carbonate decom-
position. Ewart and Stipp (1968) reported North
Island greywacke carbonate concentrations of about 
0.1% (as b u t no isotope measurements are
avai 1 e.

i s due t o increasing pro-

has C values about so that probably

CONCLUSIONS

Comparison of the carbon-13 isotopic compositions
of methane and carbon dioxide i n geothermal gases
suggest that there i s some correlation w i t h under-
ground temperatures. The temperatures derived 
from isotopic i b r i u m considerations are
generally 100-200 C higher than measured or s i l i c a
temperatures i n the areas considered. However,
although carbon dioxide i s the dominant species
and i t s isotopic composition would not be much
affected by exchange w i t h methane, the methane may
have an isotopic composition which is independent
of that of the or of the observed geothermal
reservoir characteristics. I t is not possible a t
th i s stage t o assume any one process for the iso-
topic composition of methane, and i n fac t the
collected samples could have a mixture of methanes
of different origins, w i t h the relat ive propor-
tions varying between different fields. 

The hydrogen-water isotopic exchange would appear
to be the most useful as a geothermometer b u t i t
has proved d i f f i cu l t to analyse consistently in
our laboratory and, we suspect, also i n other lab-
oratories. This exchange is well calibrated ex-
perimental ly and theoretically and appears to have
the best potential for estimating underground
temperatures, particularly from surface manifes-
tations where, a t Ngawha i t reliably predicted
temperatures found by nearby dr i l l ing to depths o f
500-1500 metres. Thus the AD estimate of near

i s c valuable for Tikitere,

high temperatures.

although A C data suggests the possibility of

Hydrogen isotopic temperatures estimated from the
well are often higher than those estimated
from the surface and from 1 s i 1 temperatures.
The exception to th is i s a t Wairakei where (except
for a few early analyses) a very good correlation
is obtained between and the s i l i c a
temperatures. The higher isotopic temperatures
found i n other areas be due t o a frozen equil-
ibrium indicating temperatures a t greater depth or
possibly a corrosion reaction w i t h the steel of
the newer well casings a t Broadlands and Ngawha.

The 1 a t t e r suggestion does not however appear t o
be substantiated by excess hydrogen in terms of 
the chemical equi 1 ib r i urn between hydrogen, water,
carbon dioxide and methane.

Thus, although i t appears that these gases contain
geothermomeric information, i t i s not possible to
say tha t these isotopic relationships are not
fortuitious. may be that each gas and i t s
observed isotopic concentrations i s of independent
origin.
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