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ABSTRACT 
There are several analytical models available in oil and gas 
theory for application to well tests. These include the 
standard homogenous infinite reservoir model as well as 
various boundary models. This includes a linear 
impermeable boundary model which is commonly used to 
represent an impermeable fault near the well. While all these 
models are of interest to the geothermal reservoir engineer, 
commonly they do not fit geothermal well test data. The 
models are based on analytical solutions with many 
assumptions that do not fully hold in the geothermal 
reservoir environment.  

Advances are being made in modelling geothermal well tests 
using the TOUGH2 reservoir simulator rather than analytical 
models. A standard design for setting up TOUGH2 models 
has been developed and so to accompany this, an equivalent 
to the linear impermeable boundary model has been 
developed. This is achieved by modifying the block volumes 
of the radial grid as if they are cut by a planar feature at a 
specified distance from the well. Using these modified 
volumes to simulate the results of geothermal pressure 
transients yields derivative plot results which are similar in 
shape to the equivalent analytical model. The proximity of 
the boundary to the well is varied in order to investigate how 
proximal the boundary must be in order to affect the model 
results. 

1. INTRODUCTION 
A standard model design for simulating geothermal pressure 
transients has been developed (McLean and Zarrouk, 2015). 
This basic model produces a uniform reservoir response. A 
wide variety of reservoir and boundary models are available 
in analytical oil and gas pressure transient analysis theory, 
including a linear impermeable boundary model. A 
numerical equivalent to this model has been developed and 
is demonstrated in this paper.  

2. BACKGROUND 
2.1 Analytical linear impermeable boundary model 
A linear impermeable boundary is one of a catalogue of 
boundary models available in analytical well test analysis 
(Horne, 1995). It is commonly referred to as a fault 
boundary. Caution must be exercised when referring to the 
boundary as a fault, to make it explicitly clear that this is a 
case of a completely impermeable fault. In some cases, 
especially in seismically active geothermal reservoirs, faults 
can be permeable targets for drilling rather than 
impermeable boundaries, and confusion can easily arise.  

The characteristic of an analytical linear impermeable 
boundary model in a semilog plot is a doubling of the slope 
of the infinite acting response at the time the boundary starts 

to affect the measured pressure. The time at which the slope 
doubles is used to estimate the distance from the well to the 
fault. This response is seen in a derivative plot as a second 
flat region (Horne, 1995).  

3. MODEL SETUP 
3.1 General setup 
A numerical model was set up for an injection test into a 
well in Ohaaki geothermal field, New Zealand, following the 
standard guidelines outlined by McLean and Zarrouk (2015). 
A schematic of this model is shown in Figure 1 and key 
model parameters are given in Table 1. The block volumes 
and connection areas were then modified as if cut by a linear 
feature at a specified distance from the well (Figure 2).  

A

 

Figure 1: Schematic of standard model setup using 
TOUGH2 and PyTOUGH (McLean and Zarrouk, 
2015).  

 

 

Figure 2: Schematic of top view of model grid with 
definition of geometry elements to be used in 
calculations.  
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Table 1: Key model parameters for test model 
PARAMETER VALUE 

Reservoir permeability (mD) 10 

Reservoir temperature (°C) 310 

Skin factor  0 

Number of blocks in skin zone 50 

Number of blocks in reservoir zone 100 

Skin zone width (m) 5 

Model radial extent (km) 20 

Layer thickness (m) 600 

Well radius (m) 0.1 

Well porosity 0.9 

Well volume (m3) 81.4 

Well compressibility (Pa-1) 6×10-8 

 

3.2 Calculate modified volumes 
The geometry elements illustrated in Figure 2 are: 

• rb = well-to-boundary distance (m) 
• r = radius of the current block (m). 
• x = distance along the boundary line from 

perpendicular bisector to the intersection with the 
block radius (m). 

• h = block thickness (m). 
• 𝜃 = angle formed at the grid centre by a triangle 

defined by: the grid centre, and the two points at 
which the boundary line intersects the outer radius 
of the block (radians). 

• Asector = area of pie-shaped wedge defined by 𝜃 
and block radius (m2). 

• Atriangle = area of triangle defined by 𝜃 and block 
radius (m2). 

• Asector = area of arc-shaped sector defined by 𝜃 and 
block radius (m2). 

These elements are then used to calculate the modified block 
volume with basic geometry equations. The area of the 
segment (red area in Figure 2) is needed as this represents 
the portion of the block that is being excluded.  

𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  𝐴𝑠𝑒𝑐𝑡𝑜𝑟 −  𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒                              (1) 
 

The law for the area of triangles gives: 

𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 𝑥 𝑟𝑏                                        (2) 
 

The sector area is a fraction of the area of the circle of the 
same radius: 

𝐴𝑠𝑒𝑐𝑡𝑜𝑟 =  
𝜃

2𝜋 𝜋𝑟
2                                       (3) 

Equation 2 and 3 merge into Equation 1 to give: 

𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  
𝜃

2𝜋 𝜋𝑟
2 −  𝑥 𝑟𝑏                            (4) 

 

The distance x is given by trigonometry: 

𝑥 = 𝑟. 𝑠𝑖𝑛 �
𝜃
2
�                                (5) 

Equation 5 merge into Equation 4: 

𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  
𝜃

2𝜋 𝜋𝑟
2 −  𝑟𝑏 𝑟 𝑠𝑖𝑛 �

𝜃
2�                    (6) 

Equation 6 allows the calculation of the segment area if 
block radius (r), well-to-boundary distance (rb) and angle 
(𝜃) are known.  

Angle (𝜃) can be defined in terms of r and rb using 
trigonometry: 

𝜃 = 2 𝑐𝑜𝑠−1 �
𝑟𝑏
𝑟 �                            (7) 

Merging Equation 7 into Equation 6 eliminates the angle (𝜃) 
and leaves only the known terms which are block radius (r) 
and well-to-boundary distance (rb). Multiplication by the 
layer thickness (h) converts this to a volume:  

𝑉𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = ℎ � 
2 𝑐𝑜𝑠−1 �𝑟𝑏𝑟 �

2𝜋 𝜋𝑟2

−  𝑟𝑏 𝑟 𝑠𝑖𝑛�
2 𝑐𝑜𝑠−1 �𝑟𝑏𝑟 �

2 ��        (8) 

The modified volume of any block is then equal to its 
original volume minus the volume of the segment, if the 
block radius is greater than the well-to-boundary distance.  

3.3 Calculate modified connection areas 
An unmodified connection area between two blocks is equal 
to the circumference of the inner block multiplied by the 
thickness: 

𝐴𝑟𝑒𝑎 = 2 𝜋 𝑟 ℎ                                   (9) 
 

The portion of the connection area that is “lost” behind the 
boundary is a fraction of the whole and defined by the angle 
(𝜃). Subtracting this from the original area gives the 
modified connection area: 

𝐴𝑟𝑒𝑎𝑚𝑜𝑑 =  2 𝜋 𝑟 ℎ �1 −  
𝜃

2𝜋�                   (10) 

Merging Equation 7 into 10 gives the modified area in terms 
of r, rb and h: 

𝐴𝑟𝑒𝑎𝑚𝑜𝑑 =  2 𝜋 𝑟 ℎ �1 −  
2 𝑐𝑜𝑠−1 �𝑟𝑏𝑟 �

2𝜋 �          (11) 

THESE CALCULATIONS CAN BE DONE 
AUTOMATICALLY USING STANDARD PYTHON 
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COMMANDS, AND UPDATED IN THE INPUT FILE 
FOR TOUGH2. THE USER HAS ONLY TO ENTER A 
VALUE FOR THE WELL-TO-BOUNDARY 
DISTANCE (RB) AS THE BLOCK RADII AND LAYER 
THICKNESS ARE ALREADY DEFINED IN THE 
MODEL SETUP. 4. RESULTS AND DISCUSSION 
4.1 Derivative and semilog plot behaviour 
The model produces results which have characteristics very 
similar to those of the equivalent analytical model (Section 
2.1). These are demonstrated with an example model with an 
impermeable fault boundary at 50m from the well which is 
compared to a model with no boundary (Figure 3 and 4).  

Figure 3 demonstrates a flattening of the pressure derivative 
followed by a second flat region at a slightly higher level. 
Figure 4 demonstrates a steepening of the slope of the 
semilog straight line from 1.3 to 2.0.  

 

Figure 3: Pressure derivative plot comparing model 
results for no fault to a fault at 50m. First and 
second flat derivative regions indicated with blue 
lines.  

 

 

Figure 4: Semilog plot comparing model results for no 
fault to a fault at 50m. Semilog straight lines 
indicated with blue lines. Estimated time at which 
fault influences response indicated with blue 
arrow. 

 

4.2 Variation of well to boundary distance 
The well to boundary distance has been varied from 1m to 
5000m. The simulations have been run for 2 million seconds 

(23 days) to demonstrate the long-term behaviour. The 
reservoir permeability of the test model is 10mD with no 
skin effect. The derivative plot results are shown in Figure 5.  

It can be seen in Figure 5 that if the fault is very close to the 
well, then the first flat derivative region cannot be seen as it 
is masked by the early-time hump related to wellbore 
storage. For a boundary 10m or closer, the response looks 
like a standard uniform reservoir response. Therefore the 
interpretation of the data as a uniform reservoir will result in 
a significant underestimate of the reservoir permeability.   

 

Figure 5: Derivative plot of simulated results for a range 
of boundary distances 1m to 5000m.  

 

The duration of the simulation is not sufficient to see the 
effects of a boundary at 1000m or greater. The results for a 
boundary at 1000m and 5000m are not distinguishable from 
the results when there is no boundary (Figure 5). In reality it 
is unlikely the a boundary would be identified at a distance 
greater than 100m as the effects of this boundary are only 
seen after 10 hours, and tests of this duration are rare.   

In late-time the derivative calculated from the model results 
becomes increasingly noisy (Figure 5). In late-time the 
pressure change becomes less as the pressure fall-off 
flattens. As the pressure change becomes smaller, the 
number of significant digits available in TOUGH2 for 
pressure becomes insufficient to describe the pressure 
change. The pressure output begins to resemble a step 
function with increments of 0.001 bar. The overall effect on 
the derivative is that is becomes increasingly noisy, and 
eventually starts oscillating between noisy sections and zero. 
This is a fundamental issue related to the way in which 
TOUGH2 is setup, and also the manner in which the 
derivative is calculated. It is possible these issues can be 
resolved with further work, though this is beyond the scope 
of this paper.  

4.3 What is a believable boundary distance? 
During the inverse modelling process of fitting various 
models to a set of field data, a number of models may fit the 
same data. It is a matter for the reservoir engineer to 
establish which of the models is the most reasonable 
(representative). Sometimes a linear impermeable boundary 
model will “fit” the data but give an impractically large 
boundary distance of 1000m or more. When a set of field 
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data is quite short and the boundary distance is very large, it 
is clear the model can be disregarded. However the question 
of exactly where to draw this line is not easy to address.  

The time required for the boundary to affect the results of 
the test depends on distance to the boundary and also the 
permeability of the reservoir. The closer the boundary and 
the more permeable the reservoir, the shorter the test 
duration required to “see” the boundary.  

In order to investigate this issue a number of simulations 
have been run using the test model. Three values for 
reservoir permeability have been investigated, 10mD, 
100mD and 1000mD. For each permeability value a range of 
boundary distances has been investigated, 1m, 5m, 10m, 
20m, 50m, 100m, 200m, 500m, 1000m and 5000m. 
Derivative plots of the simulated results have been visually 
examined to identify the point at which the boundary starts 
to affect the results (Table 2). These values are the minimum 
time required for the effect to start, a much longer time is 
required to adequately capture this effect.  

Table 2: Simulation time required to “see” effects of 
boundary. 
Boundary 
distance 

(m) 

 

Time to “see” boundary (sec) 

 10mD 100mD 1000mD 

1 Too close Too close Too close 

5 Too close Too close Too close 

10 Too close Too close Too close 

20 4,000  
(1.1 hr) 
 

400  
(0.1 hr) 

70  
(0.02 hr) 

50 6,000  
(1.7 hr) 

 

600 
(0.2 hr) 

100  
(0.03 hr) 

100 30,000  
(8.3 hr) 

 

2,000  
(0.6 hr) 

400  
(0.1 hr) 

200 200,000  
(2 days) 

 

10,000  
(2.8 hr) 

1000  
(0.3 hr) 

500 2,000,000  
(23 days) 

 

100,000  
(28 hr) 

Noisy 

1000 Not seen Noisy Noisy 

5000 Not seen Noisy Noisy 

 

It can be seen in the results presented in Table 2 that: 

• For all values of reservoir permeability, a 
boundary 10m or closer cannot be identified. The 
response is masked by wellbore storage as 
discussed in Section 4.2.  

• Some late time results are so badly affected by 
noise for reservoir permeabilities of 100mD and 
1000mD that the boundary response cannot be 
identified.  

• The time to “see” the boundary increases 
exponentially with the boundary distance.  

• A 10 hour test will “see” a fault out to 100m if the 
permeability is quite low at 10mD. It will “see” a 
fault out to 200m if the permeability is higher at 
100mD.  

• A 1 hour test is not long enough to “see” any 
faults when the permeability is low at 10mD. A 1 
hour test will “see” a fault out to 100m if the 
permeability is higher at 100mD.  

• A reservoir permeability of 1000mD is 
impractically high and investigated only for 
interest. In theory if the permeability is this high, 
then a fault will be “seen” out past 200m with a 
test of only 1 hour. The limit cannot be determined 
due to noise in the results.  

5. CONCLUSIONS 
• The characteristic response for this TOUGH2 

linear impermeable boundary model is very 
similar to but not identical to the analytical model 
equivalent.  

• Characteristics of this model are a second flat 
region on the derivative plot, and a semilog 
straight line which steepens to a second semilog 
straight line.  

• A boundary very close to the well (10m or less) 
cannot be identified as the characteristic features 
in the derivative plot are masked by wellbore 
storage. The derivative plot looks like a standard 
uniform reservoir response, and will result in a 
significant underestimate of the reservoir 
permeability.  

• The test duration required to “see” a fault response 
increases exponentially with fault distance.  

• In a low permeability reservoir (10mD) a 10 hour 
test will only see a fault boundary out to 
approximately 100m. A much longer test would 
then be required to capture the entire boundary 
response.  

• In a high permeability reservoir (100mD) a 10 
hour test will still only see a fault boundary out to 
approximately 200m.  

• Very long simulations produce derivative results 
which are noisy in late-time. This is related to the 
number of significant digits available for pressure 
in the TOUGH2 simulator.  

•  
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