
35th New Zealand Geothermal Workshop: 2013 Proceedings
17 – 20 November 2013

Rotorua, New Zealand

TIM – YET ANOTHER GRAPHICAL TOOL FOR TOUGH2

Angus Yeh, Adrian E. Croucher and Michael J. O’Sullivan

Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

a.yeh@auckland.ac.nz

Keywords: TOUGH2, MULgraph, reservoir modelling,
GUI, visualisation, graphics, PyTOUGH, Python, PyQt

ABSTRACT

A new open source graphical tool, called TIM, has been
developed to aid the workflow of TOUGH2 reservoir model
development and calibration. Visualisation of model pa-
rameters and simulation results is TIM’s main feature. It
also allows the user to manipulate the model data file inter-
actively. In contrast to some other software tools which
excel at qualitative 3-D visualisation and presentation, TIM
mainly aims at producing easily accessible 2-D layer and 2-
D slice plots that integrate the display of colour, text and
flow arrows. This allows clearer quantitative assessment of
local model behaviour which is often important for manual
model calibration. In this respect, the software fills a gap
among the available graphical pre-/post-processors for
TOUGH2.

Instead of a more generic design focused on complete flexi-
bility, the user interface is tailored to match the common
workflow of model calibration. The operation of the soft-
ware is designed to ease the cycle of parameter adjustment,
simulation, and visualisation and plotting of results.

The software is written in the Python programming lan-
guage, and makes use of the PyTOUGH library and the
application framework PyQt. This allowed very rapid de-
velopment, and provides cross-platform functionality and
easy extensibility. The software has already proven very
useful with only limited time and energy invested in its
development.

1. INTRODUCTION

The TOUGH2 family of flow simulators has attracted the
development of many pre- and post-processing graphical
tools. MULgraph (O'Sullivan and Bullivant 1995) is one of
the earliest graphical user interfaces (GUIs) designed for
TOUGH2 model calibration. PetraSim (Swenson, Harde-
man et al. 2002) provides a fully integrated environment in
which modellers can pre-process, run, and post-process
TOUGH2 models. GeoCad (Burnell, White et al. 2003) has
functionality similar to that of MULgraph, plus some grid
generation capabilities.

In recent years, more GUIs for TOUGH2 have been devel-
oped and published, possibly resulting from advancements
in software technology: These include the Simple Geother-
mal Modeling Environment software of Tanaka and Itoi
(2010), Leapfrog Geothermal (Alcaraz, Lane et al. 2011),
Tougher (Li, Niewiadomski et al. 2011), mView (Avis,
Calder et al. 2012), TOUGHVISUAL (Yang, Xu et al.
2012), and TOUGH2Viewer (Bondua, Berry et al. 2012).
Most of these more modern GUIs provide three-
dimensional (3-D) viewing. It is worth noting that mView
is quite different from PetraSim in that, rather than creating
a monolithic modelling environment, it emphasises a modu-
lar toolkit concept. The latter, modular approach is also the
one adopted for our new interface.

We recognise that different visualisation styles are useful in
different situations. Many of the more modern GUIs con-
centrate primarily on 3-D visualisation, which can be very
useful for qualitative assessment and presentation. Our
experience, however, is that two-dimensional (2-D) visuali-
sation still offers benefits over 3-D visualisation in day to
day model development. This is because 2-D layers and
slices allow a clearer overlay of multiple model properties
and results, including scalar and vector quantities, using
colours, text and flow arrows on the model grid. This al-
lows a more detailed quantitative assessment, which is often
important in model calibration. Additionally, locating and
isolating a specific area of interest in a full 3-D visualisa-
tion is often difficult. For this reason, MULgraph has con-
tinued to be an important post-processing tool in our manu-
al calibration workflow.

Originally developed in 1995, MULgraph is showing its
limitations in the current modelling environment. One
major limitation of MULgraph is its linear style of opera-
tion, with users having to carry out operations in a pre-
determined sequence. For example, if temperatures are
displayed in a certain model layer, the user is required to
exit and then re-enter through several levels of menus in
order to display temperatures in a different layer. A simi-
larly lengthy procedure is required to switch from display-
ing variables defined at blocks (e.g. pressures and tempera-
tures) to variables defined at connections (e.g. mass flows),
or to time histories of variables at a particular block or gen-
erator. It is not possible to see several different kinds of
information displayed at the same time, or even switch
between them quickly. This sequential mode of operation
is unfortunately built into the core architecture of the MUL-
graph code, and would be very difficult to modify. At pre-
sent MULgraph users have to print out separate plots of,
say, temperature, permeability and mass flows and look at
three paper plots in order to decide how to change parame-
ters to make part of a model hotter or colder.

MULgraph was written in Fortran77, and hence in a non-
object-oriented programming style. This makes it difficult
to maintain and extend its capabilities. The use of the
Graphical Kernel System (GKS) and other low level
graphics libraries in MULgraph also makes porting the code
to modern operating systems difficult. For the same reason,
the dated look and feel of the interface is almost impossible
to update without major work. It was thought that overall,
the effort of improving MULgraph in any significant way
was probably comparable to, or greater than, that of devel-
oping replacement software and this conclusion provided
the motivation for starting the software project described
here.

In recent years, PyTOUGH (Croucher 2011; Wellmann,
Croucher et al., 2012), a Python scripting library for
TOUGH2, has proven to be very useful for manipulating
TOUGH2 simulations (O'Sullivan et al., 2013). The Leap-
frog Geothermal GUI (Alcaraz, Lane et al., 2011) already
uses PyTOUGH to load simulation results for visualisation.
Our experiences in using PyTOUGH’s extensive abilities

35th New Zealand Geothermal Workshop: 2013 Proceedings
17 – 20 November 2013

Rotorua, New Zealand

for handling TOUGH2 input and output files soon inspired
the idea of building a new GUI, that replicates and extends
the capabilities of MULgraph using PyTOUGH as its foun-
dation.

The longevity of MULgraph, despite its limitations, sug-
gests that a modern replacement will fill a gap among the
available graphical pre- and post-processors for TOUGH2.
A prototype was built to investigate the feasibility of the
idea. This has quickly proved to be useful, even with only
limited time and energy invested. In this paper, we describe
the design, implementation and features of the software.

2. SOFTWARE DESIGN

The new software, referred to here as TIM (TIM Isn’t
MULgraph), is designed around a few key requirements:

2.1 Optimised for model calibration workflow

As mentioned above, TIM retains the 2-D visualisation
approach of MULgraph. In MULgraph's case, the 2-D
approach probably resulted in part from the limitations of
the graphical software available at the time of its develop-
ment, but in fact resulted in a very effective tool for quanti-
tative model assessment and manual model calibration.

TIM’s main features are loosely based on those of MUL-
graph. It is, however, built using a very different approach,
and abandons MULgraph's sequential operation. Through
the use of text, colour and flow arrows, up to two scalar
quantities and one vector quantity can be displayed simul-
taneously and all different model parameters and simulation
outputs can be accessed. Information integration and clarity
of presentation have the highest priority.

The main view allowed by TIM consists of ‘scenes’ that
display one or more views of the model and results. It is
quick and easy to switch between scenes or even to show
multiple scenes together. This main view can be accompa-
nied by various utility windows, such as line plots or tables,
in a synchronous manner. The facilitation of better cali-
bration workflow is achieved by allowing tasks to be ac-
complished in any desired order. In short, TIM’s goal is to
allow modellers access to all model information, in any
order, with the only limitation being the 2-D visualisation
style.

Separately, the occasional need for 3-D visualisation has
been achieved using Leapfrog Geothermal or ParaView
(Ahrens, Geveci et al. 2005; ParaView 2013) (with
PyTOUGH as a file converter).

2.2 Rapid software development

The amount of time and human resource required for TIM’s
past and future development was and is obviously an im-
portant consideration. Unlike software written in the tech-
nology environment of 1980s, modern programs are often
built on software libraries. This approach avoids program-
mers having to “reinvent the wheel”, and allows them to
make use of libraries they may have already used in a dif-
ferent context, and hence are already familiar with. Today,
there are plenty of high quality open source libraries availa-
ble. In particular, this is true for all the key components of
TIM: the GUI, visualisation engine, TOUGH2 interface,
and scientific plotting.

2.3 Easy extensibility

Making the software easily extensible, both by its develop-
ers and by the user, means the application can be constantly

optimised for workflow, even when the workflow changes
over time, or between different modellers. The choice of
well established, easy to use, software libraries has ensured
the extensibility of the software.

2.4 User-friendly modern interface

MULgraph's idiosyncratic user interface is, for the user, one
of its most obvious limitations. In its place, we wanted an
interface that was modern and would feel familiar to its
users. The common operations that work well in other
visualisation software, such as view control and selection,
are also used in TIM, so it is more natural for users to
switch between applications. However, TIM’s user inter-
face concentrates on modelling by using the terminology
and operational logic familiar to a modeller.

The user-friendliness of an application is sometimes hard to
measure, especially when considering the different re-
quirements of new users and experienced modellers who
wish to optimise workflow. It is important to improve the
user-friendliness constantly by iteratively performing usa-
bility testing and modifying or redesigning the interface.
We have achieved this aim by involving several colleagues
as beta-testers. We have made various changes to TIM
based on problems our beta-testers have experienced. This
kind of iterative development is only possible because of
the rapid development platform we are using.

3. IMPLEMENTATION

TIM is written in Python, a versatile, powerful, modern
programming language that is open source and easy to
learn. Python programs, unlike those written in Fortran or
C/C++, do not require compilation, which speeds the devel-
opment cycle and makes it easier for users to customise and
extend the software to their particular and changing needs.
Using Python gives TIM a different level of extensibility
compared with other GUIs for TOUGH2.

Another attractive feature of Python is the very large num-
ber of software libraries available for it, most of them open
source, extending the capabilities of the language into very
diverse areas. The implementation of TIM is based on the
combination of two of these Python libraries: PyQt and
PyTOUGH.

The GUI part of TIM makes use of PyQt, a Python binding
of the GUI framework Qt. Qt is a popular cross-platform
application framework and GUI toolkit. Python binding
enables code using the powerful Qt C++ library to be more
easily written and debugged (Summerfield 2008). The use
of PyQt is one of the key choices that enabled TIM to be
very rapidly developed.

TIM uses PyTOUGH to interface with the input and output
of TOUGH2 simulations. PyTOUGH is actively main-
tained and continues to support a variety of TOUGH2 simu-
lators. Hence, TIM is also able to support them, and auto-
matically benefits from the continual improvements made
to PyTOUGH. If needed, PyTOUGH itself can also be
modified by the user, because it is an open source library.

Using Python and PyTOUGH also naturally opens up the
possibility of powerful scripting capabilities within TIM.
TIM includes Python’s interactive console to allow users to
interact dynamically with objects of both the GUI compo-
nents and PyTOUGH’s objects. This should be a natural
function for modellers who already use PyTOUGH.

35th New Zealand Geothermal Workshop: 2013 Proceedings
17 – 20 November 2013

Rotorua, New Zealand

Since Python, PyQt and PyTOUGH all have cross-platform
capabilities, TIM inherits their advantage of being highly
portable. No change in code is required between computing
platforms, including the three major environments that
TOUGH2 is commonly run on: Windows, Linux, and Mac-
OS.

4. GEOMETRY

In the finite volume approach used by TOUGH2, the model
grid is defined by a set of block volumes and the connec-
tions between them, without any reference to a coordinate
system. Except in the case of very simple regular rectangu-
lar grids, a separate geometry definition is usually needed
(or at least very useful) for creating the TOUGH2 grid and
visualising the results. At present, TIM uses the same 'ge-
ometry file' as MULgraph for this purpose. This assumes a
layer/ column grid structure, with a number of horizontal
layers, each of constant thickness and with the same hori-
zontal structure in plan-view. Arbitrary unstructured hori-
zontal grid structures are permitted. It is also possible to
have incomplete layers at the top of the model, to represent
either varying topography or the elevation of the water ta-
ble.

With a layered grid structure of this kind, it is natural for
modellers to want to view the model in terms of layers, i.e.
one layer at a time. Accordingly TIM, like MULgraph,
offers scenes based on layers, and also scenes representing
vertical slices through the model grid. TIM additionally
allows the user to create vertical slices based on polylines
(rather than just simple straight lines). Multiple slice scenes
can be created, and the user can easily switch between them
(as well as the layer scenes).

Although TIM currently creates its visualisation scenes
using a MULgraph geometry file, the core code architecture
is not dependent on this particular geometry definition. The
visualisation engine simply creates scenes by working out
which TOUGH2 blocks and connections should be in the
scene, and how they should be presented. The scenes can
then show model data (i.e. the simulation input and output)
by mapping them to these blocks and connections. Hence,
it would be easy to extend TIM to support other types of
grid geometry, as long as 2-D scenes were still meaningful
in terms of model calibration, or to other file formats for
layer/ column geometries. This could be done by either
extending the PyTOUGH library, or simply writing code to
convert other formats into MULgraph geometry files. In
fact, PyTOUGH already supports conversions from the 2-D
Gmsh grid format (Geuzaine and Remacle 2009) to a
MULgraph geometry file.

5. FEATURES

Figure 1: TIM’s main window can display any scene
and is highly customisable.

Figure 2: A layer scene shows temperature in colour,
gas saturation in text, and mass flow using ar-
rows.

Figure 3: A vertical slice scene shows well tracks, verti-
cal permeability, and mass flow.

35th New Zealand Geothermal Workshop: 2013 Proceedings
17 – 20 November 2013

Rotorua, New Zealand

Figure 4: The scene control panel allows user to inde-
pendently switch between scenes, variables for
colour, text, and arrow. The list of displayable
variables is user customisable.

Figure 5: Selection can be done in various ways, includ-
ing intuitive methods like clicking on blocks, and
more flexible methods like using regular expres-
sions (a string pattern matching language).

Figure 6: TOUGH2 input files can be edited using the
tables.

Figure 7: Graphs such as history plots and well down-
hole plots can be independently shown alongside
the current scene.

Figure 8: TIM’s interactive mode is available for users
to interact with PyTOUGH objects (or GUI
components) directly using the Python language.

6. ACCESS

The TIM software is currently in an initial development and
testing stage, and the authors intend to release it in early
2014. The code will be open source, released under the
GNU General Public License (GPL). Users will be encour-
aged to customise the software for their workflow or extend
its capability.

7. CONCLUSIONS

A new open source GUI, called TIM, has been developed to
aid the workflow of TOUGH2 reservoir model development
and calibration. TIM is designed differently from many
available GUIs for TOUGH2. With a clear 2-D visualisa-
tion style, it enables modellers to quantitatively assess mul-
tiple model properties and results, including scalar and vec-
tor quantities, using colours, text and flow arrows on the
model grid. Together with functions specifically designed
by and for modellers, this makes TIM very well suited to
the workflow of model development and calibration.

TIM is written in the Python scripting language and makes
use of the PyTOUGH library. This gives TIM a very rapid
development cycle and a higher level of extensibility and
customisability than other GUIs for TOUGH2.

35th New Zealand Geothermal Workshop: 2013 Proceedings
17 – 20 November 2013

Rotorua, New Zealand

REFERENCES

Ahrens, J., Geveci, B., Law, C. ParaView: An End-User
Tool for Large Data Visualization. In the Visualiza-
tion Handbook. Edited by C.D. Hansen and C.R.
Johnson. Elsevier. (2005).

Alcaraz, S., Lane, R., Spragg, K. et al.: 3D geological mod-
elling using new LEAPFROG geothermal software.
Thirty-Sixth Workshop on Geothermal Reservoir
Engineering, Stanford University, Stanford, Califor-
nia. (2011).

Avis, J., Calder, N. and Walsh, R.: mView - a powerful pre-
and post-processor for TOUGH2. TOUGH Sympo-
sium 2012, LBNL, Berkeley, California. (2012).

Bondua, S., Berry, P., Bortolotti, V. and Cormio, C.
TOUGH2Viewer: a post-processing tool for interac-
tive 3D visualization of locally refined unstructured
grids for TOUGH2. Computers & Geosciences 46,
107-118 (2012).

Burnell, J. G., White, S. P., Osato, K. and Sato, T.: Geo-
Cad, a pre- and postprocessor for TOUGH2.
TOUGH Symposium 2003, LBNL, Berkeley, Cali-
fornia. (2003).

Croucher, A.: PyTOUGH: a Python scripting library for
automatic TOUGH2 simulations. Proceeding 33rd
New Zealand Geothermal Workshop 2011, Auck-
land, New Zealand. (2011).

Geuzaine, C., Remacle, J.-F. Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and
post-processing facilities. International Journal for
Numerical Methods in Engineering 79(11), 1309-
1331 (2009).

Li, Y., Niewiadomski, M., Trujillo, E. and Sunkavalli, S. P.
Tougher: a user-friendly graphical interface for
TOUGHREACT. Computers & Geosciences 37,
775-782. (2011).

O'Sullivan, M. J., Bullivant, D. P.: A graphical interface for
the TOUGH family of flow simulators. Proceedings
of the TOUGH Workshop '95, Berkeley,California.
(1995).

O'Sullivan, J.P., Dempsey, D., Croucher, A.E., Yeh, A. and
O'Sullivan, M.J. Controlling complex geothermal
simulations using PyTOUGH. Proceedings of the
Thirty-Eighth Workshop on Geothermal Reservoir
Engineering, Stanford University, Stanford, Califor-
nia. (2013).

ParaView, http://www.paraview.org Cited August. (2013).

Summerfield, M. Rapid GUI programming with Python and
Qt : the definitive guide to PyQt programming. Up-
per Saddle River, NJ, Prentice Hall. (2008).

Swenson, D., Hardeman, B., Butler, S., Persson, C. and
Thornton, C.: Using the Petrasim pre- and post-
processing for TOUGH2, TETRAD, and STAR.
Twenty-Seventh Workshop on Geothermal Reser-
voir Engineering, Stanford University, Stanford,
California. (2002).

Tanaka, T., Itoi, R.: Development of numerical modeling
environment for TOUGH2 simulator on the basis of
graphical user interface (GUI). Proceedings World
Geothermal Congress 2010, Bali, Indonesia. (2010).

Wellmann, J. F., A. Croucher, et al. Python scripting librar-
ies for subsurface fluid and heat flow simulations
with TOUGH2 and SHEMAT. Computers & Geo-
sciences 43: 197-206. (2012).

Yang, Y., Xu, T., Wang, F. et al.: TOUGHVISUAL: a us-
er-friendly pre-processing and post-processing
graphical interface for TOUGHREACT. TOUGH
Symposium 2012, LBNL, Berkeley, California.
(2012).

